
Shooting from the Heap: Ultra-Scalable Static Analysis with
Heap Snapshots

Neville Grech
Dept. of Informatics, University of Athens

and Dept. of Computer Science, University of Malta
me@nevillegrech.com

George Fourtounis
Dept. of Informatics, University of Athens

Greece
gfour@di.uoa.gr

Adrian Francalanza
Dept. of Computer Science, University of Malta

Malta
adrian.francalanza@um.edu.mt

Yannis Smaragdakis
Dept. of Informatics, University of Athens

Greece
yannis@smaragd.org

ABSTRACT

Traditional whole-program static analysis (e.g., a points-to analysis

that models the heap) encounters scalability problems for realistic

applications. We propose a łfeatherweightž analysis that combines

a dynamic snapshot of the heap with otherwise full static analysis

of program behavior. The analysis is extremely scalable, offering

speedups of well over 3x, with complexity empirically evaluated

to grow linearly relative to the number of reachable methods. The

analysis is also an excellent tradeoff of precision and recall (relative

to different dynamic executions): while it can never fully capture all

program behaviors (i.e., it cannot match the near-perfect recall of a

full static analysis) it often approaches it closely while achieving

much higher (3.5x) precision.

CCS CONCEPTS

· Software and its engineering→Compilers;General program-

ming languages; General programming languages;

KEYWORDS

Program Analysis, Heap Snapshots, Scalability

ACM Reference Format:

Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smarag-

dakis. 2018. Shooting from the Heap: Ultra-Scalable Static Analysis with

Heap Snapshots. In Proceedings of 27th ACM SIGSOFT International Sympo-

sium on Software Testing and Analysis (ISSTA’18). ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3213846.3213860

1 INTRODUCTION

Static analysis [27] attempts to infer the behavior of a program

under all possible inputs. The technique usually strives to infer

over-approximate behavioral abstractions such as call-graphs and

points-to sets, by capturing the entire space of possible executions of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA’18, July 16ś21, 2018, Amsterdam, Netherlands

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5699-2/18/07. . . $15.00
https://doi.org/10.1145/3213846.3213860

the program. These abstractions can then be used to optimize com-

pilation, assist program comprehension, and facilitate bug-finding,

potentially revealing errors that only manifest themselves long

after the analyzed software is released and deployed [2].

The main advantage of static analysis is, thus, completeness, i.e., a

perfect (or, in practice, near-perfect) recall of actual behaviors. But

despite its effectiveness, static analysis generally suffers form two

main weaknesses: (i) it is computationally expensive and suffers

from scalability issues (ii) it can lack precision, typically producing

a large amount of false positives, i.e., predicted behaviors that do

not match actual executions.

By contrast, dynamic analysis techniques such as testing [25],

dynamic typing [20], and runtime monitoring and verification [12]

avoid computationally expensive analyses by limiting themselves

to the information exhibited by the executing program, also tak-

ing advantage of runtime information learned such as concrete

parameter and memory values (which would otherwise be hard

to infer statically). The main downside of such approaches is that,

often, they are not exhaustive (e.g. in [13] theoretical maximality

results are established that substantially limit the properties that

can be analysed at runtime). Put differently, programs can have an

exponential number of different executions and sampling behaviors

from any finite numbers is unlikely to capture all executions.

The space of program analysis is, therefore, defined by com-

peting quality criteria: completeness, precision, and scalability. This

paper proposes a tradeoff that attempts to combine limited dynamic

information inside a static analysis, in order to drastically improve

scalability and precision, at some cost to completeness (i.e., the

recall of actual executions).

Although valuable combinations of runtime and static analyses

have been explored extensively (e.g., dynamic-symbolic execution

[23, 33]) these emphasize a local generalization of concrete values, in

an attempt to induce more dynamic behaviors. The results remain

incomplete, with good coverage locally but with little effort to

simulate all possible whole-program behaviors. For instance, a

dynamic-symbolic exercising of a method foo does not explore in

full generality methods in a deep call chain (e.g., 10 nested calls

away) from foo but instead considers their behavior from a single

concrete execution. Similarly, combining dynamic information in

an otherwise fully-general whole-program static analysis has been

a fruitful avenue, with tools such as Tamiflex [4] and, recently,

HeapDL [15]. Such work aims to enhance completeness, permitting

198

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3213846.3213860
https://doi.org/10.1145/3213846.3213860

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

the static analysis to cover behaviors of hard-to-analyze code, such

as reflection calls, but does not address the scalability or precision

limitations of static analysis.

In contrast, our featherweight hybrid analysis approach entails re-

placing parts of the static analysis hindering scalable reasoningwith

dynamic facts. Specifically, we replace static heap reasoning with

concrete heap snapshots, derived from actual executions. Technology-

wise, we are explicitly inspired by the HeapDL work [15], which

argues that heap snapshots are a mature, portable, and industrial-

strength technology in modern runtimes, such as the JVM and

the Dalvik VM (for Android). A heap snapshot indeed captures

a wealth of information about the program’s actual behavior, in

addition to the standard links between heap objects, and can report

near-complete call-graphs of past program activity.

Featherweight hybrid analysis leverages the information of heap

snapshots to enhance analysis precision and scalability. The result

is a static analysis that is kept lightweight by sacrificing some

of its generalizing elements. Other aspects of the static analysis

remain unchanged: all values propagate inter-procedurally through

method calls, of any complexity and context depth. The result

exhibits several desirable properties:

• Very high scalability (with at least 3x and often over 10x speedups,

and scaling to deeper context sensitivity), thus making the ap-

proach feasible for many applications.

• High completeness, in terms of several analysis metricsÐe.g., an

over 96% recall of call-graph edges observed in different dynamic

executions. The level of completeness approaches that of a full-

fledged static analysis, at a fraction of the cost, and vastly exceeds

that of a purely-dynamic analysis.

• High precision (2.2x to 3.5x higher, for different metrics) when

compared to state-of-the-art static analysis.

Our main contributions are as follows:

• We posit the idea that static analysis scalability is primarily hin-

dered by the exhaustive modeling of the heap, which is a central,

shared data structure, as opposed to method calling (i.e., the stack),

which induces more localized value sharing.

• We formulate a static analysis that does not model mutation of

the heap, replacing this modeling with dynamic snapshots of

heap state. Heap values can be read, but they only correspond to

actually observed values.

• We evaluate the resulting featherweight hybrid analysis. We

analyze experimentally the tradeoff between precision, scalability,

and completeness, showing how a traditional static analysis pays a

heavy price (of imprecision and cost) for completeness that may be

unnecessary. The evaluation captures the potential from multiple

angles: running time, asymptotic trends, precision/recall tradeoffs.

Our purposely partial but lightweight analysis often approaches

the completeness of much less scalable but semantically-complete

static analyses.

2 BACKGROUND AND MOTIVATION

In this work, we focus on whole-program analysis, which models

global structures, such as the stack and the heap in conventional

programming languages. In particular, we are interested in points-to

analysis [32, 35, 38], an analysis of how values flow through refer-

ences throughout the program. Such a large-scale analysis cannot

afford to model a program in full detail: points-to analyses are rarely

path-sensitive (i.e.,modeling separately all possible execution paths,

or distinct combinations of branches) or even flow-sensitive (model-

ing different branches separately). Instead, the analysis typically

keeps a single global view of the entire heap, which represents the

union of all possible sets of objects that a variable or field may

reference at any point of any execution.

This simplifying view of program behavior allows points-to

analysis algorithms to handle flow of information from extremely

far-away program sites. In contrast to techniques that closely model

program semantics (such as model checking, data-flow analyses, or

variants of symbolic execution), points-to analysis accounts in full

generality for the effects of distant or flow-unrelated methods (e.g.,

methods that got called billions of instructions earlier during an

actual execution, or methods that are hundreds of calls above or

below the current method in any calling stack).

This ability comes at a cost: points-to analysis typically offers

low precision and suffers from scalability issues. To control the

balance between precision and scalability,1 points-to analyses often

employ context-sensitivity: instead of computing information that

unifies all possible executions, the analysis only groups together

different executions that have the same context. Each set of abstract

values computed (e.g., the possible values of a method’s variables or

of an object’s fields) is qualified under a context. Context can take

many shapes [35]. E.g., a single-element context for the variables of

a method can be the call-site of the method, or the object on which

the method was called.

Striking a good balance between scalability and precision is far

from a resolved question [21]. Typical current whole-program anal-

yses easily become unscalable (see, e.g., [37]) for a context of depth

merely 2, which is not even precise enough to differentiate separate

instances of common data structures such as a Java HashSet.

The main insight underpinning our hybrid analysis is that the

handling of the global heap (as opposed to the much more disci-

plined stack structure) is the main culprit for the unscalability of

static analysis. In a conventional language, like Java, the heap is

a graph structure containing objects as nodes and references as

edges, which may take multiple forms, e.g., object field references,

static field references or array content references. There are several

reasons why the static modeling of the heap is unscalable. The

heap is a global structure, therefore the effects of unrelated pro-

gram parts accumulate and can affect any other program parts. The

heap also includes static referencesÐthe analogue of global vari-

ables in the imperative worldÐwhich can typically be modified by

any part of the program. Furthermore, array contents are typically

collapsed to a single variable abstraction (due to lack of precise,

path-sensitive reasoning), which results in large imprecision, and,

hence, unscalability.

3 FEATHERWEIGHT HYBRID ANALYSIS

We next describe our hybrid analysis approach, consisting of a static

analysis of the program, yet considering only a dynamic view of the

program’s heap. This combination aims to achieve scalability, far

1The precision vs. scalability tradeoff is complex. Scalability requires at least good
enough precisionÐlow precision will render an analysis unscalable unless special
representations are employed. However, high precision will also make an analysis
unscalable: the analysis model blows up in size, in a standard state-explosion fashion.

199

Shooting from the Heap: Ultra-Scalable Static Analysis with Heap Snapshots ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

beyond typical static analyses, and coverage of different program

behaviors, far beyond a purely dynamic analysis.

3.1 Featherweight Static Analysis

Since the modeling of the heap is the main source of unscalability

for static analysis, is there a way to avoid modeling it? For most

conventional languages, such an analysis would appear to be useless

from a purely static stance since a static analysis that does not

model the heap is grossly incomplete, missing most valid program

behaviors. However, our intention is to combine concrete models

of the heap with a static analysis that can integrate these models,

yet does not otherwise itself compute models of the heap.

Our featherweight static analysis realizes this aim. It is a points-

to analysis that fully models inter-procedural elements, such as

the stack (i.e., method calls, parameter passing, and method re-

turn values). As regards to the heap, the analysis can only read in

information. Specifically, it only models heap loads (e.g., reading

from fields and arrays) but not stores (e.g., field updates): the latter

information must come from dynamic heap models.

We give a formal model of the featherweight analysis for a min-

imal intermediate language, shown in Figure 1. Other constructs,

such as control flow, are irrelevant to the analysis (since it is flow-

insensitive) and type information is modeled in separate relations,

discussed later. The analysis is a standard Andersen-style points-to

analysis with on-the-fly call-graph construction [35, 38]. The anal-

ysis also has parametric context-sensitivity, which we describe in

more detail later. Programs are assumed to be sets of instructions

with variables having a unique name per method (in general, per

nested block scope). Instruction labels are assumed unique.

Input, Output, and Conventions. The domains of the analysis (and

meta-variables used subsequently, plain or primed) comprise the

following: a set of variables, v, u ∈ V , a set of methods, meth ∈ M , a

set of instruction labels, i, j ∈ I , a set of fields, f ∈ F , a set of class

types, T ∈ T , a set of contexts, c ∈ C , a set of heap contexts, h ∈ H ,

and a set of abstract objects, oi
h
∈ O . We use instruction labels, i , to

annotate new instructions, method calls, and returnsÐimplicitly, all

instructions have a label, but it is not used in the model for other

instruction types. An abstract object, oi
h
, uniquely identifies its

allocation instruction (i.e., v = new Ti ()), via its superscript i , and its

allocation heap context, via its subscript h. We omit the superscript

or subscript of an abstract object, writing just o, whenever they are

not important (but merely propagate unchanged). In addition to

a set of instructions, the analysis has access to standard symbol-

table/type system information:

• We write methT to denote the result of looking up (per the usual

overriding rules) method signature meth in a class type T.

• We represent formal argument of method meth at position n with

argmethn .

• For a method call instruction with label i , we represent its actual

argument at position n as argin .

• We overload set membership notation: o ∈ T means that an

abstract object o is of type T; i ∈ meth means that the instruction

with label i is in the body of method meth.

The interfacing of the featherweight static analysis with its sur-

roundings (including dynamic analysis inputs and final outputs)

is done via the relations shown in Figure 2. For each relation, we

note if it is an input that has already been filled in by the dynamic

step, or a relation computed by the featherweight static analysis.

Note that relations Reachable and CallGraphEdge are both input and

computed: they initially contain the facts of the dynamic step and

that information is then augmented by the featherweight analysis.

Importantly, relation FieldPointsTo is input-only: any information

on the shape of the heap comes from the outside world.

Static Analysis Inference Rules. The analysis model works by

applying the rules in Figure 3 iteratively until fixpoint. Most rules in

Figure 3 correspond to one of the instruction forms in Figure 1Ðfor

clarity, the instruction is listed as the first premise of such rules. The

static analysis considers the respective instructions in any order:

the rules are monotonic, so their order of application over many

iterations reaching fixpoint does not influence the outcome.

The first rule to apply is necessarily Alloc, since all others re-

quire a VarPointsTo assertion, i.e., _ −→c o, as one of their premises

(which is in turn generated by this inference rule). Stated other-

wise, the analysis begins from an initially reachable set of methods

(provided as input) and infers points-to relationships, which trigger

further inferences according to the program instructions.

Context-sensitivity is parametric, following a model introduced

in reference [36]. This gives us the flexibility of choosing different

flavors of context sensitivity. Concretely, the analysis is supplied

with two helper functions:

• NHC(i, c) (also known as Record [36]) is used in rule Alloc

and creates a new heap context for instruction i and context c ,

• NC(i, c,o) (also known as Merge [36]) is used in rule Call) and

constructs a new (callee) context for instruction i , (caller) context

c , and abstract object o.

The definition of these functions is purposely left abstract and can

be instantiated to get the desired flavor of context sensitivity.

As we discussed earlier, the analysis model covers load instruc-

tions but not store instructions. As a result, when this analysis is

exercised in stand-alone fashion, it does not infer heap state, i.e.,

FieldPointsTo assertions, which in principle prevents rules such as

Load from being applied. However, our hybrid analysis assumes

that the dynamic analysis will generate the necessary FieldPointsTo,

which are then used by other inference rules such as Load.

The Call rule infers two types of assertions: it establishes call-

graph edges (based on points-to information) and a reachability

assertion for a newly created context c ′ (using standard dynamic

lookup methT) of a method signature). The rule is separate from the

inferences made by the Args rule, since failure to infer points-to

values for an argument should not prevent the establishment of a

call-graph edge and target-method reachability. The Args and Ret

rules cover propagation of points-to information on the stack, via

method parameters and returns.

Notably, in this minimal language, the heap only consists of

instance field references (i.e., no static fields or arrays). Hence, the

featherweight static analysis is only missing a rule to handle store

instructions, compared to a fully static analysis. Such a rule would

have the form:

(Store)
u . f = v u −→c o v −→c o

′

o.f −→ o′

200

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

Instruction := v = new Ti () new

| v = u move

| u = v . f field load

| u . f = v field store

| u =i v . meth(v1, . . . , vk), k ≥ 0 method call

| returni v return

Figure 1: Syntax of the source language instructions.

Relation Notation Description Input Computed

FieldPointsTo oh .f −→ o′
h′

Field f of abstract object oh points to

abstract object o′
h′ .

�

VarPointsTo v −→c o
i
h

Variable v, in context c , points to ab-

stract object oi
h
with heap context h via

allocation instruction i .

�

Reachable meth
c

Method meth is reachable in context c . � �

CallGraphEdge i
calls
−−−−→

c

c ′ meth
Instruction i calls method meth, under

caller context c and callee context c ′.
� �

Figure 2: Relations used in the featherweight static analysis.

(Alloc)
v = new Ti () i ∈ meth meth

c
h = NHC(i, c)

v −→c o
i
h

(Load)
u = v . f v −→c o o.f −→ o′

u −→c o
′

(Move)
v = u u −→c o

v −→c o

(Call)
u =i v . meth(v1, . . . , vk) v −→c o o ∈ T c ′ = NC(i, c,o)

methT
c ′

i
calls
−−−−→

c

c ′ methT

(Args)
i
calls
−−−−→

c

c ′ meth argin −→c o

argmethn −→c o
(Ret)

returni v i ∈ meth v −→c o j
calls
−−−−→

c

c ′ meth u =j ∗

u −→c o

Figure 3: Inference rules for featherweight static analysis.

3.2 Dynamic Analysis

To produce our hybrid analysis, featherweight static analysis needs

to be supplied with dynamic heap information from standard Java

HPROF heap dumps, which are snapshots of the heap and stack

during program execution [28].

Following Grech et al. [15], our HPROF heap dump analyzer lever-

ages the standard cross-platform support for heap profiling in Java-

based runtime environments, i.e., the ability to produce whole-heap

snapshots containing all objects allocated in the heap, together

with references between these objects (the shape of the heap). Heap

snapshots are analyzed offline. Heap snapshots also offer insights

about the stack shape: they include full stack traces produced when

any object is created. Grech et al. [15] summarize this capability of

modern heap snapshot technology as ła typical heap snapshot also

integrates many thousands of stack snapshotsž.

Typically, heap dumps reflect a substantial portion of the complex

dynamic behavior of a program, regardless of the cause of such

behavior: instead of watching what happens at specific actions (e.g.,

reflection or dynamic loading operations), a heap dump records

the cumulative semantic effects of program execution in its native

setting and complex environment. At the same time, heap dumps

do not miss the ability to capture dynamic actions (e.g., a dynamic

call-graph) since each object records information describing the

dynamic context at the time of its allocation.

The heap dump analysis works by iterating over the heap snap-

shot to build a graph structure of the heap. In the process it resolves

forward and backwards references, indexes instances by class hierar-

chy information, and more. Object abstractions are mainly derived

from allocation traces (i.e., call stacks), which are traversed until

the actual new object expression is found in the application. This is

not always straightforward, since some code may occasionally be

missing. In this case heuristics are used to predict the stack frame

where the actual object was allocated. If allocation traces are not

present in the heap, a coarser-grain abstraction is currently con-

structed per-type in case of application classes. Otherwise a finer

grain abstraction is used according to the object’s contents. Given

these tools to traverse the heap snapshot and form suitable object

abstractions, the following dynamic heap information is extracted:

Object Field Values: values an object’s fields can point to, for

the entire class hierarchy of the object’s class.

Static Field Values: values a class’s static fields can point to.

Array Content Values: values an array’s contents can point to.

In addition, dynamic control-flow information is also extracted

from heap snapshots. Each allocation trace present in the snapshot

represents a path through the call graph. These paths are combined

201

Shooting from the Heap: Ultra-Scalable Static Analysis with Heap Snapshots ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

to form a call graph, with every successive node in the trace being

an edge in this call graph. Similarly, the allocation trace is a witness

that every method involved in the trace is reachable.

To augment the information that is normally found in a heap

snapshot, we force the program to store more objects on the heap.

This is usually achieved via program instrumentation: specially

designed Java agents perform load-time structured bytecode trans-

formations so that new objects and references to existing objects

are created at strategic program sites, and thus reflected in the snap-

shot. This allows additional information to be extracted from the

enriched heap. Such information includes: (i) Various kinds of con-

text sensitivity information, used by call-site- and object-sensitive

analyses [26, 34]. This is done by storing additional information

at program points where objects are allocated (e.g., the current

receiver objectÐa concrete heap contextÐis used for object sen-

sitivity); (ii) Information about dynamically loaded code linked to

its class and class loader; (iii) Dead objects that reflect some past

run-time behavior. By creating these additional references, many

extra objects are live when the snapshot is taken.

Although heap dumps and dynamic stack traces capture a wealth

of information, an analysis based solely on them does not attain

adequate levels of method coverage (i.e., lacks in completeness,

measured in terms of recall) when compared to (standard) static

analyses. For instance, we computed that this dynamic analysis only

covers an average of 12% of application methods in the Dacapo 2009

benchmark suits, even though the benchmark inputs are thorough.

For instance, the jython benchmark executes pyBench, which is

meant to exercise most features of the Python language. In spite of

this, only around 10% of the application’s methods are covered. We

provide a more detailed discussion of our evaluation in Section 5.

3.3 Combining the Analyses

Combining the featherweight static analysis with dynamic snap-

shots of the heap should yield several benefits. The hybrid analysis

can exploit the strengths of the dynamic analysis while avoiding

some of the weaknesses of whole-program Java pointer analyses;

and vice versa. Compared to a full-blown static analysis, the main

benefit of featherweight analysis is scalability: the dynamic analysis

excels in its ability to get very precise heap information, which still

fully captures the observed dynamic behaviors (but possibly not

others). Compared to a stand-alone dynamic analysis, the expected

benefit is higher completeness in the coverage of possible program

behaviors. Although the heap image is fixed, it is possibly rich

enough to allow thorough static exploration of program state. The

approach of being complete only for the observed dynamic exe-

cution, yet opportunistically generalizing, is reminiscent of other

techniques, such as dynamic-symbolic execution [14]. However, the

featherweight hybrid analysis has stack variables analyzed in full

static generality, in a whole-program fashion. Such propagation of

values can be far-reaching: e.g., it can over-approximate the effects

of unboundedly long sequences of method calls.

It is important to stress that a featherweight hybrid analysis is a

static analysis. It emphasizes the over-approximate nature of static

abstractions. E.g., when multiple callers of a method pass different

values as a parameter, the values are collected as a set and (when-

ever the different callers are not distinguished based on the current

context-sensitivity policy) their results are considered collectively.

Thus, each caller can see results that pertain to all others. This is an

important distinction between an approach that is fundamentally

static and an approach (such as dynamic-symbolic execution) that

is fundamentally dynamic: when a static analysis encounters diffi-

culty in modeling a feature, it prefers to be imprecise but complete.

When a dynamic analysis encounters the same difficulty, it opts for

precision instead of an over-approximation.

4 IMPLEMENTATION

We implemented our featherweight hybrid analysis over the

Doop [5] pointer and taint [18] analysis framework. Doop is full-

featured and handles several complex semantic aspects of the Java

language, such as reflection, implicit initialization, exceptions, and

more. For dynamic analysis we used HeapDL [15], which processes

HPROF heap dumps produced by Java’s heap profiler.

The featherweight hybrid approach applies orthogonally to all

analyses in the Doop framework. This is important, since Doop

is distinguished by its richness in supporting different kinds of

context-sensitivity. Some-40 different context-sensitive analyses

are in the current main Doop code, with tens more labeled łexperi-

mentalž in the code base.

The full implementation touches significantly more elements

than the formal model of Section 3. Heap information in the full

analysis includes array contents, static fields and instance fields. In

total, these elements characterize the points of mutation of complex

objects in Java. Therefore, our implementation disables all analysis

inferences that are based on heap stores, of any kind. This requires

interventions to far-reaching logic, such as reflective actions, han-

dling of arrays, native methods that are semantically equivalent to

heap stores (e.g., compareAndSwapObject), and more.

Additionally, we employ novel special-purpose refinements to

the logic of [15] to integrate heap snapshots into a static analysis:

Singletons. A good example is the handling of singleton objects.

If a heap snapshot reveals that a certain type only has a single

instance (as a heap abstraction) ever created, then that instance is

considered to be the sole representative of its type. The analysis

then considers this instance to flow wherever there is a compatible

receiver variable (this) for some call-graph edge that is confirmed

dynamically, regardless of other static analysis inferences. This is

an excellent heuristic, very much in the spirit of the featherweight

hybrid analysis: it is inexpensive (since it only propagates a single

object), does not sacrifice precision, but enhances completeness.

Throughout our experimentation, we regularly find that more than

10% of object abstractions in heap dumps are singletons, making

the heuristic widely applicable.

Missing Field Data. We also do limited static modeling of some

incomplete heap object structures (e.g., with transient fields) but

only when these inferences are corroborated by other dynamic

information. The philosophy of this heuristic is in line with feath-

erweight analysis: we always prefer dynamic modeling of the heap,

except where this dynamic information is clearly incomplete.

Tuning Reflection Analysis. The reflection-handling logic in the

featherweight analysis is tuned accordingly. The Doop framework’s

202

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

reflection logic is highly tunable, with several completeness vs. pre-

cision knobs. Since featherweight analysis achieves much higher

precision than a full static analysis, we disable or turn down aggres-

sive heuristics (e.g., we disregard short string constants in reflection

inferences) aimed at countering static analysis imprecision.

5 EXPERIMENTAL EVALUATION

We next present the results of an experimental evaluation of the

featherweight analysis. We evaluate using the DaCapo 9.12-Bach

Java benchmark suite [3]. (Some benchmarks are excluded a priori

due to engineering reasonsÐe.g., cannot run under a profilerÐas

also documented in past work [4, 15].) The results described are en-

tirely representative of our experience with several other programs.

However, we here report the DaCapo benchmarks for the evaluation

because they offer a standardized, oft-used suite, of representative

medium-sized Java applications, and also give us the opportunity

to run the applications using different, pre-decided inputs so that

we can validate static analysis results with multiple dynamic runs.

This gives us an ability to evaluate completeness and cover unseen

executions by the analysis.

We use the following analyses/configurations:

Dynamic-small: A dynamic analysis on the DaCapo bench-

marks running a small input set. The output of this dynamic

analysis forms a baseline and can be seen as a training input:

the static analyses are supplied heap snapshots from the

dynamic-small run.

Dynamic: Combined results from dynamic analyses on

DaCapo benchmarks running the default and large input

sets. Dynamic and dynamic-small naturally have a sizeable

intersection.

Full-static: A Doop static pointer analysis (under the most

common Doop setting: selectively context-sensitive) with

reflection support, as well as a heap snapshot as input, i.e.,

under maximum-completeness settings.

Featherweight: Our featherweight static pointer analysis

(same context-sensitivity and other settings as full-static).

The evaluation intends to answer the following research questions:

RQ.A What is the relative burden and scalability of the feather-

weight hybrid analysis compared to the full-static analysis?

RQ.B What is the analysis completeness and precision (i.e.,

(usual recall and precision metrics relative to all dynamic

executions) of the featherweight analysis compared to a full

static analysis?

To answer these questions, we employ the following metrics:

Reachable methods: the number of methods that are deemed

to be reachable. We use this metric to compare the complete-

ness and precision of the respective analyses.

Call-graph edges: the number of edges in the call graph.

Relevant static analysis time: the time required to run our

analyses, inclusive of pre- and post-processing.

Total var points-to: the size of the VarPointsTo relation, the

largest and most expensive output relation of our analyses.

This metric correlates with relevant static analysis time and,

even more so, with the cost of further client analyses that

one may want to run.

Both static analyses use the Soufflé compiler, which compiles

Datalog specifications onto C++ and into binaries. Heap snap-

shots are processed using HeapDL [15]. Notably, as reported in

that work, collecting heap snapshots incurs a large overhead on

the JVM: roughly a 20x slowdown of the application-under-analysis.

This is largely due to engineering reasons in the reference HPROF

implementation (e.g., legacy implementation of the tool forces the

garbage collector to run in single threaded fashion, which causes

a bottleneck in today’s multicore architectures); these overheads

disappear on Android, and modern profilers advertise much faster

execution. (The Android setup is one in which we commonly and

fruitfully employ featherweight analysis.) Regardless, the heap

snapshot is only collected once per application and an arbitrarily

expensive static analysis can be subsequently performed with it.

Unless explicitly specified otherwise, both full-static and

featherweight-hybrid analysis are run using a 1-call-site sensitive

analysis that is applied to the subset of the methods that have val-

ues flow from their inputs to their outputs. All applications are

analyzed with the Oracle JRE 8 libraries (rev 131). Both analyses are

run with full-featured static handling of reflection. All runtimes are

established on an idle machine with an Intel Xeon E5-2687W v4

3.00GHz with up to 512 GB of RAM. All experiments have a cutoff

time of four hours (14400 seconds).

5.1 RQ.A: Scalability

Themain motivation for featherweight analysis is scalability. There-

fore we consider the relative runtime burden between the full-static

and featherweight-hybrid analysis (RQ.A). The total analyses times

(in seconds) are shown in Figure 4. Notably, we see that for all

benchmarks the featherweight analysis is at least 3.5x faster than

full-static, and up to well over 10x faster, for larger applications. For

smaller applications, the featherweight analysis has constant over-

heads that dominate the runtime, such as precomputing properties

for possibly unreachable code.

Furthermore, the featherweight analysis can be empirically seen

to scale linearly, relative to the size of the analyzed code base. We

show this using as a metric the growth of the size of the largest

analysis relation, VarPointsTo. The size of this relation correlates

with running time but is a truer indication of the burden of both the

main analysis and followup uses of analysis results. For instance, a

more efficient machine or Datalog engine may make the analysis

run faster but it is rarely the case that the underlying algorithms

of the analysis scale differently. Figure 5 indicates a roughly linear

relationship between the size of the VarPointsTo relation and the

running total number of reachable methods (including in library

code) for our featherweight-hybrid analysis. In fact, a generalized

linear model with a linear basis function attains a good goodness-

of-fit value (R2 = 0.83). On the other hand, the growth curve for the

full-static analysis in the same figure strongly suggests super-linear

behavior. In this case, the model with quadratic basis functions

has a better fit (R2 = 0.97). This is yet another indication that,

irrespective or analysis timings, the scalability of the featherweight-

hybrid analysis is inherently better.

Deeper context-sensitivity. The figures show a (selectively) 1-call-

site-sensitive configuration; this allowed us to make broad compar-

isons with the full-static analysis, which we could scale (however

203

Shooting from the Heap: Ultra-Scalable Static Analysis with Heap Snapshots ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Analysis time

avrora

batik

eclipse

h2

jython

luindex

lusearch

pmd

sunflow

xalan

full−static

featherweight
157 (7.49x)

1,176

256 (4.8x)
1,230

270 (10.74x)
2,900

228 (4x)
913

982 (14.66x)
d.n.t. 14,400

78 (3.9x)
304

75 (3.72x)
279

182 (3.54x)
645

158 (4.57x)
722

191 (5.73x)
1,094

0 3,000

Figure 4: Analysis times in seconds and speed-up factors. The jython benchmark did not terminate in the given time under

the full-static analysis, hence the speedup is a lower bound.

8000 10000 12000 14000 16000 18000

Total reachable methods

0

4538283

120000000

V
a

r
p

o
in

ts
−

to

0

270

1600

A
n

a
ly

s
is

 t
im

e

Var points−to

Analysis time

Reachable Methods vs. Var Points−To / Time (Featherweight)

15000 20000 25000 30000 35000 40000

Total reachable methods

0

272884499

300000000
V

a
r

p
o

in
ts

−
to

0

2900

4000

A
n

a
ly

s
is

 t
im

e

Var points−to

Analysis time

Reachable Methods vs. Var Points−To / Time (Full−Static)

Figure 5: Relationship between time/var-points-to size and reachable methods for the featherweight (left) and the full-static

(right) analyses. A linear and polynomial function fit the scatter plots of the featherweight and full-static analyses respectively.

The two plots do not have the same maxima but they are scaled to similar aspect ratios for easier visual comparison of slopes

(not absolute values).

imperfectly) under this flavor of context sensitivity. Nevertheless,

the featherweight-hybrid analysis scales well even for much deeper

context sensitivity. For instance, the analysis takes under 30minutes

for all benchmarks but jython for a selective-2objH analysis: a very

precise form of context sensitivity that combines 2-object-sensitive

and 1-call-site calling contexts and has a 1-object-sensitive heap

context [22]. By contrast, this setup renders the full-static analysis

completely unscalableÐonly the smallest benchmarks (luindex

and lusearch) terminate in under 4 hours, with the featherweight

analysis achieving a 36x and 41x speedup, respectively.

204

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

Table 1: Precision and Recall for Reachable Methods. The numbers are truncated instead of rounded, so that 100% occurs only

for identical reports.

precision recall (all methods) recall (unseen methods)

full-static featherweight full-static featherweight full-static featherweight

avrora 9% 24% 100% 99% 100% 67%

batik 16% 28% 99% 96% 93% 68%

eclipse 14% 30% 99% 89% 94% 51%

h2 12% 23% 100% 100% 100% 92%

luindex 12% 26% 99% 96% 99% 70%

lusearch 9% 22% 99% 99% 100% 98%

pmd 15% 30% 100% 95% 99% 74%

sunflow 13% 24% 100% 100% 100% 100%

xalan 9% 23% 100% 100% 100% 100%

average 12% 26% 99% 97% 98% 80%

Table 2: Precision and Recall for Call Graph Edges. The numbers are truncated instead of rounded, so that 100% occurs only

for identical reports.

precision recall (all edges) recall (unseen edges)

full-static featherweight full-static featherweight full-static featherweight

avrora 3% 13% 99% 95% 100% 72%

batik 7% 18% 98% 93% 92% 59%

eclipse 3% 13% 98% 88% 93% 49%

h2 3% 9% 100% 99% 100% 91%

luindex 4% 14% 99% 92% 98% 52%

lusearch 3% 11% 99% 99% 98% 90%

pmd 6% 19% 99% 94% 97% 81%

sunflow 4% 11% 99% 99% 100% 100%

xalan 2% 10% 99% 99% 100% 100%

average 4% 14% 99% 96% 97% 77%

5.2 RQ.B: Completeness and Precision

Featherweight analysis is scalable, but is it an effective static analy-

sis? More precisely, we still need to show that it can predict, with

good precision, behaviors that it has not seen as part of its input

heap snapshot. To assess this, we compare the precision and recall

(for reachable methods and call-graph edges) of the featherweight

analysis and the full-static analysis. Ground truth for these mea-

surements is taken to be the full set of available executions for the

benchmarks (i.e., not just the łsmallž benchmark input, used to

produce the heap snapshot, but also łdefaultž and łlargež inputs).

Precision and Recall are tabulated in Tables 1 and 2. To focus on

unseen executions, we also give recall results (under the heading

łrecall (unseen methods)ž) for methods that appear in the łdefaultž

and łlargež run but not in the łsmallž run. As can be seen in the

tables, the full-static analysis is highly complete, as would be ex-

pected of a state-of-the-art static analysis (especially one enhanced

with reflection analysis logic and heap snapshots). For instance,

the analysis captures over 99% (on average) of all methods and

call-graph edges encountered under any dynamic input. Even if

we narrow the denominator to the methods or call-graph edges

unseen in the heap snapshot used as input, the full-static analysis

still achieves over 97% or 98% recall.

The featherweight analysis is also good in terms of recall, how-

ever. It captures 97% (resp. 96%) of all methods (resp. call-graph

edges) seen in dynamic executions. If narrowed to the methods not

seen in the input heap snapshot, recall is still over 80% in terms of

methods and over 77% in terms of call-graph edges.

Furthermore, the featherweight analysis offers a better łbang for

the buckž and uses the computational resources more effectively

when compared to the full-static analysis, representing a good

tradeoff between precision and completeness. Its precision metrics

are significantly higher (2.2x better for methods and 3.5x better for

edges). More concretely, when the featherweight analysis predicts

that a certain method/edge is reachable/realizable, this is much

more likely to be the case than in the full-static analysis. This

observation goes hand-in-hand with the analysis scalability issue:

the featherweight analysis analyzes fully statically the stack (i.e.,

values passed through arguments/returns of calls) which is a more

precise data structure than the globally-shared heap.

The Venn diagrams of Figure 6 show in full detail the call-graph

edges discovered by each of the analyses. (A very similar figure for

reachable methods is omitted for space reasons.) The diagrams help

complete the picture from Tables 1 and 2. Featherweight analysis

finds the majority of the edges in dynamic executions (as seen in the

earlier recall numbers), including the majority of the edges not seen

in the input snapshot, while predicting proportionally many fewer

edges than the full-static analysis (as seen in the earlier precision

numbers). The Venn diagram numbers illustrate in detail how the

featherweight analysis predicts 3.5x fewer call-graph edges, yet still

captures over 77% of previously unseen edges.

205

Shooting from the Heap: Ultra-Scalable Static Analysis with Heap Snapshots ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Call Graph Edges

Figure 6: Venn diagrams depicting call graph sizes, discovered by each analysis configuration. For readability, we only show

a 3-set Venn diagram, leaving the dynamic-small execution implicit. However, the information for dynamic-small is shown

in the diagrams, using callouts. The dynamic-small results are (modulo very minor exceptions) a subset of the intersection of

full-static and featherweight, since the heap snapshot from dynamic-small is supplied as an input to both static analyses.

206

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

6 RELATED WORK

The space of combinations of static and dynamic analyses is huge.

Our discussion of related work is merely a sampling.

Using static analysis to optimize/reduce runtime checks. Using

static analyses as part of a scheme for runtime verification is rela-

tively common [6, 10, 17, 19, 31]. Our approach however first runs

a dynamic step as input to a static analysis. The opposite, running

first a static analysis to infer general properties that will be inputs

to a dynamic analysis, is more common. There are many examples

of this approach. For instance, Elkarablieh et al. [9] run a static

analysis to guide dynamic data structure repair. Most forms of opti-

mization (e.g. reducing runtime checks) require over-approximate

static information. Our approach can be most closely compared

with other work that uses dynamic information as input to static

analyses, such as the combined dynamic information with static

shape analysis of Raman and August [30] and Aftandilian et al. [1].

Heap snapshots. Potanin et al. run queries on heap snapshots to

find bugs on a particular program run [29]. Our approach uses static

analysis to generalize a heap snapshot to infer facts about other

possible executions and thus can also generalize their technique

to be applicable in a static context and find more bugs than those

found in the original program. Flanagan and Freund abstract heap

snapshots to construct UML-style object models [11]. Their abstract

interpretation constructs abstract objects by only merging dynamic

allocations while our pointer analysis uses both the heap-allocated

objects observed at runtime and the statically allocated objects (via

new in the source code).

Static-dynamic analysis combinations. A hybrid static-dynamic

approach is that of combined symbolic-concrete (łconcolicž or

łdynamic-symbolicž) execution of code [14, 33], usually employed

for testing purposes. Concolic execution switches on the fly be-

tween an abstract analysis state and a runtime-values state, in an

effort to satisfy symbolic conditions in the program text and cover

its behavior thoroughly. These techniques have been refined in

the Pex tool [40] to perform test case reduction and prioritization.

The main benefit, as in our technique, is that concrete information

can replace reasoning that would be too hard or impossible to per-

form statically. In this light, our approach is fully concrete for the

heap and inferring the union of concrete and symbolic facts for the

stack, without employing symbolic conditions. Another difference

with concolic techniques lies in the type of the concrete informa-

tion: ours is heap snapshots, each faithful to a whole-program run,

instead of random tests that may exhibit more unexpected behavior.

Csallner et al. [7, 8] employ a hybrid analysis for bug finding,

using a dynamic analysis to obtain higher confidence for error warn-

ings compared to a plain static analysis. The same theme has been

explored several times in the literature (e.g., [24]). Taghdiri [39]

uses a counterexample-guided refinement process to infer over-

approximate specifications for procedures called in the function

being verified. These approaches are different instances of combin-

ing dynamic and static information compared to our work, which

focuses on addressing the scalability shortcomings instead.

Analysis for dynamic language features. Our work is closely re-

lated to HeapDL [15]. HeapDL is a cross-platform tool meant to sup-

plement static analysis with dynamically-inferred information to

improve the analysis completeness, especially for programs with

highly dynamic features. HeapDL makes no direct contribution to

analysis scalability. In contrast, our work explores the idea of elimi-

nating parts of the static reasoning, expressly for scalability.

Similarly, the Tamiflex tool [4] captures run-time information

about reflection. It works by instrumenting an application using

Java agents, which intercept class loading and instrument byte-

code at load time. The added instrumentation logs the parameters

and program points where reflective operations are being used.

Tamiflex only captures reflection information (which is important

for static analysers with limited reflection support) but does not cap-

ture any other dynamic behavior. Thus, Tamiflex enhances static

analysis completeness but does not supplant key parts of static

reasoning, such as the analysis of the heap. In addition, recent im-

provements [16] in reflection analysis scalability have reduced the

need to replace static reflection analysis with dynamic techniques.

7 CONCLUSIONS

We presented a featherweight hybrid analysis operating over a fixed

model of the heap, established by dynamic analysis. The dynamic

analysis leverages heap snapshots, produced using mainstream

tools (standard-issue Java profilers) and a portable format (HPROF).

The static analysis generalizes this information in terms of its im-

pact on further stack-based behavior.

The combination yields benefits that are larger than the sum of

the parts. The analysis is significantly more scalable than a full static

analysis, especially under the most strenuous conditions (such as

full static handling of reflection or deep context sensitivity). At the

same time, the analysis has much better precision than a fully-static

analysis. Overall, featherweight analysis has a higher completeness

than a purely dynamic analysis, exposing a significantly higher

number of reachable methods and even more call-graph edges.

Combinations of this flavor represent a fruitful direction to em-

ploy for analyses that have, so far, been entirely static, emphasizing

generality and whole-program reach. Accordingly, there are several

promising directions for future work. For instance, dynamic snap-

shots can be potentially combined with flow-sensitive analyses, by

keeping per-instruction points-to information, possibly for entire

program expressions (i.e., access paths). Furthermore, we are cur-

rently developing bug-finding analyses (mostly information-flow

patterns) for large enterprise applications, in a joint project with

a large industrial partner. Featherweight analysis is an excellent

choice for such clients that (a) pose scalability challenges, (b) can

tolerate incompleteness.

ACKNOWLEDGMENTS

We gratefully acknowledge funding by the European Research

Council, grant 307334 (SPADE), a Facebook Research and Academic

Relations award and an Oracle Labs collaborative research grant.

In addition, the research work disclosed is partially funded by the

REACH HIGH Scholars Program ś Post-Doctoral Grants. The grant

is part-financed by the European Union, Operational Program II,

Cohesion Policy 2014-2020 (Investing in human capital to create

more opportunities and promote thewellbeing of society - European

Social Fund).

207

Shooting from the Heap: Ultra-Scalable Static Analysis with Heap Snapshots ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

REFERENCES
[1] Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci, Sara L.

Su, and Samuel Z. Guyer. 2010. Heapviz: Interactive Heap Visualization for
Program Understanding and Debugging. In Proceedings of the 5th International
Symposium on Software Visualization (SOFTVIS ’10). ACM, New York, NY, USA,
53ś62. https://doi.org/10.1145/1879211.1879222

[2] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A Few
Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World.
Commun. ACM 53, 2 (Feb. 2010), 66ś75. https://doi.org/10.1145/1646353.1646374

[3] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M.
Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. 2006. The DaCapo Benchmarks: Java Bench-
marking Development and Analysis. In OOPSLA ’06: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-Oriented Programing, Systems, Lan-
guages, and Applications. ACM Press, New York, NY, USA, 169ś190. https:
//doi.org/10.1145/1167473.1167488

[4] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011.
Taming reflection: Aiding static analysis in the presence of reflection and custom
class loaders. In ICSE. ACM, New York, NY, USA, 241ś250. https://doi.org/10.
1145/1985793.1985827

[5] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Spec-
ification of Sophisticated Points-to Analyses. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA ’09). ACM, New York, NY, USA, 243ś262. https://doi.org/
10.1145/1640089.1640108

[6] Qichang Chen, Liqiang Wang, Zijiang Yang, and Scott D. Stoller. 2009. HAVE:
Detecting Atomicity Violations via Integrated Dynamic and Static Analysis. In
Proceedings of the 12th International Conference on Fundamental Approaches to
Software Engineering: Held As Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009 (FASE ’09). Springer-Verlag, Berlin, Heidelberg,
425ś439. https://doi.org/10.1007/978-3-642-00593-0_30

[7] Christoph Csallner and Yannis Smaragdakis. 2005. Check ’n’ Crash: Combining
static checking and testing. In Proc. 27th ACM/IEEE International Conference on
Software Engineering (ICSE). ACM, 422ś431.

[8] Christoph Csallner, Yannis Smaragdakis, and Tao Xie. 2008. DSD-Crasher: A
Hybrid Analysis Tool for Bug Finding. ACM Transactions on Software Engineering
and Methodology 17, 2, Article 8 (May 2008), 37 pages. https://doi.org/10.1145/
1348250.1348254

[9] Bassem Elkarablieh, Sarfraz Khurshid, Duy Vu, and Kathryn S. McKinley. 2007.
STARC: Static Analysis for Efficient Repair of Complex Data. In Proceedings
of the 22Nd Annual ACM SIGPLAN Conference on Object-oriented Programming
Systems and Applications (OOPSLA ’07). ACM, New York, NY, USA, 387ś404.
https://doi.org/10.1145/1297027.1297056

[10] Michael D. Ernst. 2003. Static and dynamic analysis: Synergy and duality. In
WODA 2003: ICSE Workshop on Dynamic Analysis. Portland, OR, 24ś27.

[11] Cormac Flanagan and Stephen N. Freund. 2006. Dynamic Architecture Extraction.
In Proceedings of the First Combined International Conference on Formal Approaches
to Software Testing and Runtime Verification (FATES’06/RV’06). Springer-Verlag,
Berlin, Heidelberg, 209ś224. https://doi.org/10.1007/11940197_14

[12] Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian
Cassar, Dario Della Monica, and Anna Ingólfsdóttir. 2017. A Foundation for
Runtime Monitoring. In Runtime Verification (RV) (LNCS), Vol. 10548. Springer,
8ś29. https://doi.org/10.1007/978-3-319-67531-2_2

[13] Adrian Francalanza, Luca Aceto, and Anna Ingolfsdottir. 2017. Monitorability
for the HennessyśMilner logic with recursion. Formal Methods in System Design
(2017), 1ś30.

[14] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’05). ACM, New York,
NY, USA, 213ś223. https://doi.org/10.1145/1065010.1065036

[15] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis.
2017. Heaps Don’t Lie: Countering Unsoundness with Heap Snapshots. Proc.
ACM Programming Languages (PACMPL) OOPSLA (Oct. 2017), 68:1ś68:27. Issue
1. https://doi.org/10.1145/3133892

[16] Neville Grech, George Kastrinis, and Yannis Smaragdakis. 2018. Efficient Reflec-
tion String Analysis via Graph Coloring. In Proceedings of the 32nd European
Conference on Object-Oriented Programming (ECOOP’18), Vol. 109. LIPICS, Leibniz,
Germany, Article 26, 25 pages.

[17] Neville Grech, Julian Rathke, and Bernd Fischer. 2013. Preemptive type check-
ing in dynamically typed languages. In International Colloquium on Theoretical
Aspects of Computing. Springer, Springer-Verlag, Berlin, Heidelberg, 195ś212.
https://doi.org/10.1007/978-3-642-39718-9_12

[18] Neville Grech and Yannis Smaragdakis. 2017. P/Taint: Unified Points-to and Taint
Analysis. Proc. ACM Programming Languages (PACMPL) 1, OOPSLA, Article 102
(Oct. 2017), 28 pages. https://doi.org/10.1145/3133926

[19] Rajiv Gupta, Mary Lou Soffa, and John Howard. 1997. Hybrid Slicing: Integrat-
ing Dynamic Information with Static Analysis. ACM Transactions on Software
Engineering and Methodology 6, 4 (Oct. 1997), 370ś397. https://doi.org/10.1145/
261640.261644

[20] Robert Harper. 2016. Practical Foundations for Programming Languages (2nd ed.).
Cambridge University Press, New York, NY, USA.

[21] Michael Hind. 2001. Pointer analysis: haven’t we solved this problem yet?. In Proc.
of the 3rd ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE ’01). ACM, New York, NY, USA, 54ś61.

[22] George Kastrinis and Yannis Smaragdakis. 2013. Hybrid Context-Sensitivity for
Points-To Analysis. In Proc. of the 2013 ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI ’13). ACM, New York, NY, USA.

[23] B Korel, HWedde, and R Ferguson. 1992. Dynamic method of test data generation
for distributed software. Information and Software Technology 34, 8 (1992), 523 ś
531. https://doi.org/10.1016/0950-5849(92)90146-G

[24] Kaituo Li, Christoph Reichenbach, Christoph Csallner, and Yannis Smaragdakis.
2012. Residual Investigation: Predictive and Precise Bug Detection. In Proceedings
of the 2012 International Symposium on Software Testing and Analysis (ISSTA 2012).
ACM, New York, NY, USA, 298ś308. https://doi.org/10.1145/2338965.2336789

[25] Aditya P. Mathur. 2008. Foundations of Software Testing (1st ed.). Addison-Wesley
Professional.

[26] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized
object sensitivity for points-to analysis for Java. ACM Transactions on Software
Engineering and Methodology 14, 1 (2005), 1ś41. https://doi.org/10.1145/1044834.
1044835

[27] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. 2010. Principles of
Program Analysis. Springer Publishing Company, Incorporated.

[28] Oracle. [n. d.]. HPROF Binary Format. https://java.net/downloads/
heap-snapshot/hprof-binary-format.html

[29] Alex Potanin, James Noble, and Robert Biddle. 2004. Checking Ownership and
Confinement: Research Articles. Concurrency and Computation: Practice & Ex-
perience - Formal Techniques for Java-like Programs 16, 7 (June 2004), 671ś687.
https://doi.org/10.1002/cpe.v16:7

[30] Easwaran Raman and David I. August. 2005. Recursive Data Structure Profiling.
In Proceedings of the 2005 Workshop on Memory System Performance (MSP ’05).
ACM, New York, NY, USA, 5ś14. https://doi.org/10.1145/1111583.1111585

[31] Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. 2002. Hybrid Analy-
sis: Static & Dynamic Memory Reference Analysis. In Proceedings of the 16th
International Conference on Supercomputing (ICS ’02). ACM, New York, NY, USA,
274ś284. https://doi.org/10.1145/514191.514229

[32] Barbara G. Ryder. 2003. Dimensions of Precision in Reference Analysis of Object-
Oriented Programming Languages. In Proc. of the 12th International Conf. on
Compiler Construction (CC ’03). Springer, 126ś137. https://doi.org/10.1007/
3-540-36579-6_10

[33] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit
Testing Engine for C. In Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE-13). ACM, New York, NY, USA,
263ś272. https://doi.org/10.1145/1081706.1081750

[34] Micha Sharir and Amir Pnueli. 1981. Two Approaches to Interprocedural Data
Flow Analysis. In Program flow analysis: theory and applications, Steven S. Much-
nick and Neil D. Jones (Eds.). Prentice-Hall, Inc., Englewood Cliffs, NJ, Chapter 7,
189ś233.

[35] Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Foundations
and Trends in Programming Languages 2, 1 (2015), 1ś69. https://doi.org/10.1561/
2500000014

[36] Yannis Smaragdakis, Martin Bravenboer, and Ondřej Lhoták. 2011. Pick Your Con-
texts Well: Understanding Object-Sensitivity. In Proc. of the 38th ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages (POPL ’11). ACM, New
York, NY, USA, 17ś30.

[37] Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspec-
tive Analysis: Context-sensitivity, Across the Board. In Proc. of the 2014 ACM
SIGPLAN Conf. on Programming Language Design and Implementation (PLDI ’14).
ACM, New York, NY, USA, 485ś495. https://doi.org/10.1145/2594291.2594320

[38] Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav.
2013. Alias Analysis for Object-Oriented Programs. In Aliasing in Object-Oriented
Programming. Types, Analysis and Verification, Dave Clarke, James Noble, and
Tobias Wrigstad (Eds.). Lecture Notes in Computer Science, Vol. 7850. Springer
Berlin Heidelberg, 196ś232. https://doi.org/10.1007/978-3-642-36946-9_8

[39] Mana Taghdiri and Daniel Jackson. 2007. Inferring specifications to detect
errors in code. Automated Software Engineering 14, 1 (2007), 87ś121. https:
//doi.org/10.1007/s10515-006-0005-x

[40] Nikolai Tillmann and Jonathan de Halleux. 2008. Pex-White Box Test Generation
for .NET. In Tests and Proofs, Second International Conference, TAP 2008, Prato,
Italy, April 9-11, 2008. Proceedings (Lecture Notes in Computer Science), Bernhard
Beckert and Reiner Hähnle (Eds.), Vol. 4966. Springer, 134ś153. https://doi.org/
10.1007/978-3-540-79124-9_10

208

https://doi.org/10.1145/1879211.1879222
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1007/978-3-642-00593-0_30
https://doi.org/10.1145/1348250.1348254
https://doi.org/10.1145/1348250.1348254
https://doi.org/10.1145/1297027.1297056
https://doi.org/10.1007/11940197_14
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/3133892
https://doi.org/10.1007/978-3-642-39718-9_12
https://doi.org/10.1145/3133926
https://doi.org/10.1145/261640.261644
https://doi.org/10.1145/261640.261644
https://doi.org/10.1016/0950-5849(92)90146-G
https://doi.org/10.1145/2338965.2336789
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1044834.1044835
https://java.net/downloads/heap-snapshot/hprof-binary-format.html
https://java.net/downloads/heap-snapshot/hprof-binary-format.html
https://doi.org/10.1002/cpe.v16:7
https://doi.org/10.1145/1111583.1111585
https://doi.org/10.1145/514191.514229
https://doi.org/10.1007/3-540-36579-6_10
https://doi.org/10.1007/3-540-36579-6_10
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1561/2500000014
https://doi.org/10.1561/2500000014
https://doi.org/10.1145/2594291.2594320
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1007/s10515-006-0005-x
https://doi.org/10.1007/s10515-006-0005-x
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Featherweight Hybrid Analysis
	3.1 Featherweight Static Analysis
	3.2 Dynamic Analysis
	3.3 Combining the Analyses

	4 Implementation
	5 Experimental Evaluation
	5.1 RQ.A: Scalability
	5.2 RQ.B: Completeness and Precision

	6 Related Work
	7 Conclusions
	References

