
JEqualityGen: Generating Equality and Hashing Methods

Neville Grech
ECS, University of Southampton

n.grech@ecs.soton.ac.uk

Julian Rathke
ECS, University of Southampton

jr2@ecs.soton.ac.uk

Bernd Fischer
ECS, University of Southampton

b.fischer@ecs.soton.ac.uk

Abstract
Manually implementing equals (for object comparisons) and
hashCode (for object hashing) methods in large software projects
is tedious and error-prone. This is due to many special cases, such
as field shadowing, comparison between different types, or cyclic
object graphs. Here, we present JEqualityGen, a source code gener-
ator that automatically derives implementations of these methods.

JEqualityGen proceeds in two states: it first uses source code re-
flection in MetaAspectJ to generate aspects that contain the method
implementations, before it uses weaving on the bytecode level to
insert these into the target application. JEqualityGen generates not
only correct, but efficient source code that on a typical large-scale
Java application exhibits a performance improvement of more than
two orders of magnitude in the equality operations generated, com-
pared to an existing system based on runtime reflection. JEquality-
Gen achieves this by generating runtime profiling code that collects
data. This enables it to generate optimised method implementations
in a second round.

Categories and Subject Descriptors D.3.4 [Processors]: Code
generation

General Terms Algorithms, Performance, Theory

Keywords meta-programming, equality, hashing, code genera-
tion, Java, Scala, AspectJ, AOP

1. Introduction
The notion of equality between objects is distinguished from ob-
ject identity in that the latter is tied to the concept of individuating
different objects regardless of their behaviour. Equality is a more
general concept which is defined more loosely as ’some’ equiva-
lence relation between objects. The official Java documentation [1]
published by Sun (Oracle) contains an object contract that specifies
the details of this relation, and asks that equals methods behave
as an equivalence relation. To support this, Java provides a default
equals method in the Object class that follows this contract. It
is intended that programmers override this method to define their
own custom notion of equality between objects, obviously without
breaking the contract. Note, however, that this contract is not at all
enforced in the Java language.

The implementation of equals methods in many different
classes can therefore be a tedious and error prone process. In fact,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’10, October 10–13, 2010, Eindhoven, The Netherlands.
Copyright c© 2010 ACM 978-1-4503-0154-1/10/10. . . $10.00

a number of studies [2, 3], together with our research, suggest that
most of these equality methods are faulty and violate the object
contract. This arises partly due to underspecification in the object
contract itself, and partly due to subtleties in field shadowing, com-
parisons between different types, object cycles, etc. This should be
quite worrying since program bugs due to equality such as sym-
metry and transitivity violations tend to cause errors that can be
hard to track down. However, for most purposes the equals and
hashCode methods are conceptually simple operations, and their
implementations can be generated automatically. In order to do this
though we must identify what notion of object equality we target.

One reasonable viewpoint is that two objects are equal if they
are semantically indiscernible. This entails that all operations
which may be performed on these objects produce semantically
indiscernible results and cause semantically indiscernible changes
in state. However, this relation is difficult to characterise formally
and for general languages will be undecidable. In practice, we can
approximate this extensional view with a finer notion of equality
by simply comparing object state on a per-field basis. We adopt this
view of object equality throughout the paper.

This approach is also taken by Rayside et al. [3] who describe
and evaluate a generic, reflective implementation of equals and
hashCode methods. Their solution relies entirely on runtime re-
flection to ascertain the full state of each object under compari-
son. Although this will adequately perform equality checks there
are some drawbacks to doing this. Firstly, there is clearly a perfor-
mance hit in using runtime reflection to traverse object graphs. In
particular, detecting cycles in an object’s state at runtime is un-
necessarily costly. Secondly, the implementation of the equality
method is generic and hence not available for analysis or speciali-
sation. Instead, we adopt an approach where we statically generate
equality implementations by using reflection in MetaAspectJ. The
generated code is actually in the form of an aspect which is then
statically woven in to the application’s source code. This allows
our development tool, JEqualityGen,1 to be smoothly integrated in
to the build process of large projects. Since we are effectively pro-
viding support at the bytecode level rather than at the Java source
code level, JEqualityGen can also work for other programming lan-
guages that are compiled into the JVM, and we demonstrate this
for Scala. Since JEqualityGen statically generates specialised im-
plementations which require no runtime reflection, a typical per-
formance improvement of almost two orders of magnitude can be
observed over the runtime reflection solution by Rayside et al. [3].
A further speed-up can be achieved by adapting the order in which
fields are compared to the application profile. JEqualityGen sup-
ports this by generating runtime profiling code that collects data
which can then be used in a second round to automatically gener-
ate the optimised method implementations.

For the remainder of this paper we begin by identifying the chal-
lenges we are faced with in implementing equality methods. We

1 http://sourceforge.net/projects/jequalitygen/

do this by considering the common causes of faulty equality im-
plementations. This requires us to consider how the object contract
impacts upon the comparison of objects at different but comparable
types and also how the class hierarchy affects comparisons. Further
to this, we need to be able to account for equality between objects
with cyclic reference graphs. For example, consider two linked list
objects in which one list is a single node cycle containing a value,
and the other is a two node cycle in which both nodes contain the
same value. These two objects should be considered equal and our
generator recursively checks equality over such cyclic object struc-
tures.

An issue closely related to the generation of equals methods
is the generation of the related hashCode method. This method is
used for providing a hashed value of the receiver object’s state and
is supported in Java similarly to method equals by providing a
default implementation in the class Object. What is worth noting
is that the interplay between hashCode and equals is specified
as part of the object contract. In particular, the hashed values must
respect equality of objects. For this reason, we also support the
generation of hashCode methods in JEqualityGen. Moreover, we
provide support for compile-time warnings of mutations of key
fields which may adversely affect hash code calculations.

In Section 4 we give an overview of JEqualityGen’s architecture
and provide a more detailed description of issues related to its im-
plementation. This includes various code optimisations which have
been made to both simplify the code of and improve performance
of the generated methods. Given that we designed JEqualityGen
with performance in mind, we also provide a mechanism for run-
time profiling of equality operations. JEqualityGen can then use
profiled information in order to regenerate code that optimises the
order in which comparisons are made within equality operations.
We demonstrate the effectiveness of code generation and our op-
timisations by running benchmarks comparing JEqualityGen and
Rayside’s [3] system. These benchmarks, together with other test
cases, are based on a popular Java charting library, JFreeChart [4] .

2. Implementing Equality
In this section we consider the Java object contract and discuss
the problems that arise with naive implementations of equality
according to this model.

2.1 The Java object contract
The official Java documentation [1] describes the contract the
equals method has to follow.

The equals method implements an equivalence relation on
non-null object references:
• It is reflexive: for any non-null reference value x,
x.equals(x) should return true.

• It is symmetric: for any non-null reference values x and
y, x.equals(y) should return true if and only if
y.equals(x) returns true.

• It is transitive: for any non-null reference values x, y,
and z, if x.equals(y) returns true and
y.equals(z) returns true, then x.equals(z)
should return true.

• It is consistent: for any non-null reference values x and
y, multiple invocations of x.equals(y) consistently
return true or consistently return false, provided no
information used in equals comparisons on the objects
is modified.

• For any non-null reference value x, x.equals(null)
should return false.

We can see immediately from this contract that it does not specify
exactly how equality should be implemented and it will accept ob-
ject identity (also called referential equality) as an implementation.
Indeed, object identity is the default implementation provided in
class Object. Object identity is tackled extensively by Khoshafian
and Copeland [5], who also define a taxonomy of different object
identity implementation strategies. The simplest form of identity
test is a comparison of the physical memory addresses of the ob-
jects. Other implementations compare virtual addresses, structural
identifiers or user-specified identifier keys. In other systems such
as PostgreSQL, objects contain a system-generated object identi-
fier unique for every relation.

Java distinguishes between object identity, which is encoded in
the == operator and remains fixed, and object equality, which is
handled by the equals method and defaults to identity, but can be
overridden.

There are different natural choices for implementing object
equality. The common approach is to perform a state-based com-
parison between objects of the same, or at least similar types.
Khoshafian and Copeland [5] define different levels of equality,
namely shallow and deep equality while Grogono and Sakkinen
[6] refine this concept.

Referential equality, also called depth-0 equality, holds for a
and b iff a and b both point to the same objects. For primitive types
such as integers, this is the only type of equality we are interested
in. Shallow equality (or depth-1 equality), like shallow cloning,
implies that for each field in a and b, referential equality holds.
Depth-k equality holds on objects a and b if all fields in a are depth-
k′ equal to the corresponding fields in b, for all k′ < k. We refer
to this type of equality as deep equality in case k = ω. Objects
a and b are thus deeply equal if all fields in a are deeply equal to
the fields in b. Abiteboul and Van den Bussche [7] discuss three
different logical characterisations of deep equality and show that
they are equivalent.

An elegant property of referential, shallow, depth-k and deep
equality is that each type of equality implies the next. For exam-
ple, reference equality implies all other aforementioned types of
equality since if two objects are identical they are obviously equal
in all possible aspects. In this paper we address the implementation
of the coarsest of these relations, deep equality. A naive approach
to this problem would be to implement equality in a given class
by making a per-field comparison of equality on each field of the
class. For fields of primitive type their values can be compared di-
rectly using depth-0 equality. For fields of reference type the equals
method can be invoked recursively. There are two glaring problems
with this approach—this solution does not interact well with sub-
typing at all, and it will cause divergent behaviour on cyclic object
graphs. We now consider these problems in turn and consider how
to address them.

2.2 Comparing objects with different types
Equality comparisons between two objects of different types are
difficult in general. Vaziri et al. [2] claim that an equals imple-
mentation breaks the Java object contract [1] in this case. An im-
plementation cannot be symmetric and transitive when it compares
two objects of different types that might have a different interface
as well as a different implementation.

It is, however, desirable to allow, for example, TreeSet and
HashSet objects from the Java API to be comparable since they
can be interchanged while maintaining the same behaviour of the
system. A pragmatic solution to achieve this is to perform equal-
ity on different classes at a particular super-type level, although,
in practice, this presents a number of issues. For example, Hoven-
meyer et al. [8] note that one common mistake is to have equality
methods that return true even though the object types under con-

public class Point {
public int x, y;
..

}
public class CPoint extends Point {

public int col; // extra field
public CPoint(x,y,col) {

this.x=x; this.y=y; this.col=col;
}
public boolean equals(Object other) {

if (!(other instanceof Point))
return false;

Point that=(Point)other;
return this.x==that.x && this.y==that.y

&& !(other instanceof CPoint &&
((CPoint)other).col != this.col);

}
}
..
CPoint p1 = new CPoint(1,2,3);
Point p2 = new Point(1,2);
CPoint p3 = new CPoint(1,2,4);
assert p1.equals(p2);
assert p2.equals(p1); // symmetry: ok
assert p3.equals(p2);
assert p3.equals(p1); // transitivity: error
..

Listing 1. Transitivity violations occur since this equality is
stronger on CPoint than on Point.

sideration are incomparable. Another issue is that access to some
private members is impeded.

It is common that equals implementations that work across
different types start with an instance check that short-circuits the
entire operation in the case of incompatible types. However, this
tends to cause problems if we compare two objects whose respec-
tive types are subclasses of each other. Odersky et al. [9] note that
the instance check fails depending on whether equals is called
on one object or the other, which violates symmetry. For example,
an FPoint object is an instance of Point (whose class defini-
tions are both shown in Listing 2) but a Point is not necessarily
an instance of FPoint. A better equals design, as for example
presented both in [9] and [10], takes the type of its parameter into
account, and has different implementations for different types. This
can be seen in Listing 1. This approach will recover symmetry of
equality but will still violate transitivity.

In order to ensure both symmetry and transitivity, Odersky et
al. [9] suggest that each class should implement another method,
canEqual(Object o), which indicates whether the object on
the right hand side of the comparison can compare itself with
the object on the left hand side. The result from this method is
conjoined to the equality expression. This guarantees that instance
checks are always symmetric, as long as every class in the hierarchy
defines this method. An example of its use can be seen in our
generated code (cf. Listing 8).

Reflexivity of equality is the easiest property in the object con-
tract to guarantee as a successful reference equality check at the
beginning of an equality operation can be used to short circuit the
entire process; this also enhances performance.

Incorrect override. A number of authors [2, 3, 8–10] argue that
a common mistake that can easily remain undetected is that of
specifying an equals method with an incorrect signature. In this
case, equality checks default to the equals method defined in the
Object class, which only performs a reference equality check.
This can lead to errors that are very hard to track down, e.g., when

class Point {
public int x, y;
public Point() {}
public Point(int x, int y) {
this.x=x; this.y=y;

}
public boolean equals(Object o) {
if (!(o instanceof Point)) return false;
Point that=(Point)o;
return this.x==that.x && this.y==that.y;

}
}
class FPoint extends Point {
public int x, y; // shadows x and y in the

Point class
}
..
Point p1=new Point();
FPoint p2=new FPoint();
p1.x=5; p1.y=5; p2.x=5; p2.y=5;
assert p2.equals(p1); // returns false

Listing 2. Direct field access and inherited equality

the equality is called out of some library method such as a collec-
tion’s containsmethod. Automatically adding @override an-
notations to the manually implemented equalsmethods would al-
low the compiler to detect these incorrect override errors. However,
if the methods themselves are automatically generated instead, then
this problem is not only detected but resolved.

Field shadowing when sub-classing. Java permits the overriding
of fields throughout a class hierarchy. Unfortunately, this presents
a number of challenges when implementing equality methods that
compare objects of different types. For a simple example, con-
sider again the Point class in Listing 2 containing two integer
numbers and a FPoint class that extends Point and shadows
its fields. The naive implementation of equality in this situation
is to implement a single equals method in the Point class
that works for both classes, and directly accesses both fields of
the objects being compared. However, Java does not use the dy-
namic type of an object when resolving field accesses, but its static
type. Since p2.equals(p1) is dispatched to Point.equals,
it does thus not operate on the FPoint fields, but instead on the
shadowed Point fields. By default, these are set to zero and there-
fore p2.equals(p1) evaluates to false, even though the two
points are created with the same coordinates.

In Listing 3, equals is overridden in FPoint, in the hope that
equality would use the correct fields when making the comparisons.
With this modification, even though p2.equals(p1) returns
true, p1.equals(p2) returns false and therefore symmetry
is violated. This happens because the equals method called on
p2 is FPoint.equals and uses the fields in FPoint while the
equals method called on p1 is Point.equals, which only
sees Point.x and Point.y, as above.

Implementing getter methods and using them in the equality
operations solves this problem. Care must be taken however, as the
getter methods operate on the fields that are visible at that level in
the class hierarchy. Therefore these methods must be overridden
together with all equality methods.

Listing 4 shows a correct implementation with respect to field
shadowing.

2.3 Cyclic object graphs
A cyclic object graph can easily occur when objects are referencing
each other. If the developer writing the equals (or hashCode)
methods is not aware of this, an invocation of such methods would

class Point {
public int x, y;
public boolean equals(Object o) {

if (!(o instanceof Point)) return false;
Point that=(Point)o;
return this.x==that.x && this.y==that.y;

}
}
class FPoint extends Point {
public int x, y; // shadows x and y in the

Point class
public boolean equals(Object o) {

if (!(o instanceof Point)) return false;
Point that=(Point)o;
return this.x==that.x && this.y==that.y;

}
}
..
Point p1=new Point();
FPoint p2=new FPoint();
p1.x=5; p1.y=5; p2.x=5; p2.y=5;
assert p2.equals(p1);
assert p1.equals(p2); // false - error

Listing 3. Direct field access and overridden equality

class Point {
public int x, y;
public int getX() { return x; }
public int getY() { return y; }
public boolean equals(Object o) {
if (!(o instanceof Point)) return false;
Point that=(Point)o;
return getX()==that.getX() &&
getY()==that.getY();

}
}
class FPoint extends Point {
public int x, y;
public int getX() { return x; }
public int getY() { return y; }
public boolean equals(Object o)
if (!(o instanceof Point)) return false;
Point that=(Point)o;
return getX()==that.getX() &&

getY()==that.getY();
}

}

Listing 4. Correct implementation. Overriding equality methods
and accessors

never return and would consequently overflow the call stack. Ignor-
ing fields that may be involved in a cycle would make the method
terminate without overflowing the stack, but it would also make the
equality method unfaithful to the abstract state of the original ob-
ject [3]. In fact, it would either identify all cyclic object graphs, or
make them all distinct.

It is, however, possible to write equals (and hashCode)
methods that can deal with cycles. One approach that was already
used in Eiffel [11] is to assume that two objects are, prima fa-
cie, equal. Their object graphs are then traversed in parallel, and
their corresponding fields are compared, in search of evidence to
refute this assumption. Since no more evidence can be obtained
by traversing a cycle multiple times, we can assume that the ob-
jects in a cycle are equal. Figure 1 shows an example of this.
Note that cyclic objects can be equal even if their object graphs

name Joe

sibling

name Jane

sibling

name Joe

sibling

name Jane

sibling

name Joe

sibling

name Jane

sibling

name Joe

sibling

name Jane

sibling

Figure 1. Comparing the “grey” Joe object to either of the “white”
Joe objects using a naive equality implementation would never
terminate.

are not isomorphic. We do not support an equality check based on
graph isomorphism, but the modular implementation of JEquality-
Gen should facilitate such a change. For hashCode, whenever a
cycle is encountered, the object structure cycle’s hash is substituted
by a constant number. We follow this approach to handle cyclic
object structures, which is similar to Rayside et al. [3].

3. Implementing Hashing
3.1 The relationship between equals and hashCode
Although not enforced by the compiler, the Object contract
[1] also specifies a clear relationship between the equals and
hashCode methods:

• Whenever it is invoked on the same object more than
once during an execution of a Java application, the
hashCode method must consistently return the same
integer, provided no information used in equals com-
parisons on the object is modified. This integer need not
remain consistent from one execution of an application
to another execution of the same application.

• If two objects are equal according to Object.equals,
then calling the hashCode method on each of the two
objects must produce the same integer result.

• If two objects are not equal according to the method
Object.equals, then calling the hashCodemethod
on each of the two objects may or may not produce the
same integer result.

Listing 5 demonstrates what happens if hashCode is not in line
with the equals method. Since the HashSet implementation in
Java uses the hash code of an object to search for the actual object
in the collection, objects with different hash codes are considered
not equal. This will occur in our example since the default imple-
mentation of hashCode returns a value based on the location of
the object. The ArrayList structure, on the other hand, does not
make use of hash codes.

Rayside et al. [3] analyse three different Java projects and con-
clude that simple errors are all too common. One of the simplest
errors is when equals is implemented but hashCode is not. A

Point p1 = new Point(1,2,3,4);
Point p2 = new Point(1,2,3,4);
assert p1.equals(p2) && p2.equals(p1);
HashSet<Point> pSet = new HashSet<Point>();
ArrayList<Point> pList = new ArrayList<Point>();
pList.add(p1);
pSet.add(p1);
assert pList.contains(p2); // true
assert pSet.contains(p2); // false -- error

Listing 5. Consequence of equals not being in line with hashCode

number of tools [8, 12] can easily spot this trivial mistake and en-
force implementation of both methods at once. A human inspector
however can easily miss this mistake because “the mistake lies in
what is missing” [8]. Similarly, on larger projects, changes in the
structure of the class require changes in equals and hashCode.
Often, these changes are overlooked, especially considering that
there is no enforcement mechanism in the Java language. If these
methods are automatically generated then these problems are easily
solved.

3.2 Consistency of key fields
Vaziri et al. [2] note that the object contract does not require that
key fields be immutable. There are, however, undesirable conse-
quences in allowing key fields that make up the abstract state of
an object to mutate during runtime. A minor consequence is that
equality and hash results cannot be cached (memoisation). A more
serious consequence is that if an object is placed into a collection,
the operations add, remove and contains will exhibit an un-
expected behaviour. For example, in the case of a HashSet, if
an object is added, it is stored in a hash bucket determined by the
value of its hash code. Mutating one of the key fields in this object
effectively changes the object’s hash code, and it can no longer be
retrieved since it resides in a different bucket that does no longer
correspond to its new hash code.

Countering this problem entails that equality and hashing
should be based on fields that are immutable. The Java specifi-
cation, however, does not enforce this constraint. Ideally the Java
runtime system would check whether an object’s fields are mutated
after the invocation of the first equals or hashCode and issue a
runtime exception or warning.

4. JEqualityGen: Architecture and
Implementation

JEqualityGen is a code generator that automatically generates
equals and hashCode methods from annotated class archive
files. In building JEqualityGen, we make use of aspect oriented
programming (AOP) techniques, because we believe that object
equality is a cross-cutting concern. In particular, we use Meta-
AspectJ [13], a meta-programming extension for AspectJ [14].
Meta-AspectJ leverages the program transformation capabilities of
AspectJ such as inter-type declarations. This enables us to stati-
cally weave the generated code into the existing Java bytecode. We
also rely on AspectJ’s runtime reflection, in particular its ability to
inspect the call stack, to handle cyclic object graphs.

4.1 Overview
Figure 2 gives an overview of the structure of JEqualityGen. It
works by loading the user’s classes and, using reflection, statically
analyses each class and generates AspectJ aspects with the appro-
priate equality and hashing implementations. These aspects are wo-
ven into the user’s existing classes using the AspectJ compiler. All

operations are therefore carried out on compiled Java classes. This
makes JEqualityGen easy to integrate into the build process.

The code generation is modularised; each module is responsible
for certain elements of the generated aspects. A set of introspectors
act as facades [15] to the annotated Java classes. They analyse
the actual classes and provide the basic information used by the
remaining parts of the generator, including:

• which classes may be involved in cycles;
• which fields are being shadowed; and
• the order in which to best structure the equality expression

based on separately collected runtime profiling information.

This approach allows us to separate our code generator into smaller
generators. For example, there is a generator responsible for the
“naive” equality implementation and another generator for the
cyclic handlers. These generators are independent from each other,
and since they do not impinge on each other’s generated code, they
can be switched on and off. We then rely on AspectJ’s weaving
facilities to “recombine” the individual fragments into a single im-
plementation, instead of generating a monolithic implementation
of equality we could make use of AspectJ’s weaving facilities.

A field accessor facade acts as a facade [15] to each of the
individual fields in a class. These facades are implemented in MAJ
and can be viewed as a collection of generators that generate per
field advice for the final generated aspect. Every facade generates:

• accessor expressions for the particular field;
• getters for the field; and
• mutation warnings and errors advice to ensure that key fields

are not mutated in certain instances

The output of JEqualityGen is a single aspect that contains
all the equality implementations, getters, warning declarations and
cyclic-object graph advice. The implementations of the equals
and hashCode methods constructed follow the guidelines de-
scribed in Sections 2 and 3.

4.2 Annotations
In order to make use of JEqualityGen, the classes for which
equals and hashCode should be generated must be annotated
with a few simple annotations:

Equality JEqualityGen will generate appropriate equality imple-
mentations for classes that are annotated with this annotation.
A super-type may also be specified so that objects may be com-
pared at that specific level.

ReferenceEquality JEqualityGen will use Java’s default reference
equality (==) when classes annotated with this annotation are
encountered.

NonKey Fields annotated as non-keys will not be considered as
key fields and not be used for equality comparisons and hash
code computations. All fields are considered as key fields by
default.

In cases where the code that requires an equality implementation
is inaccessible to the weaver (see Section 4.6), any information
about the classes required in JEqualityGen can be given through
command line arguments.

Annotating classes that already implement either equals or
hashCode methods leads to a compile-time error, in particular, a
duplicate method declaration, as we use inter-type declarations to
insert the generated methods into the target classes.

Annotated Classes

Generated Aspect

private int Point.__get_x() { return this.x; }
..
public boolean Point.equals(Object other) {
 if (this == other) return true;
 if (other instanceof Point) {
 Point that = (Point)(other);
 return that.canEqual(this) &&
 this.__get_x() == that.__get_x() &&
 this.__get_y() == that.__get_y();
 }
 return false;
}
public boolean Point.canEqual(Object other) {
 return other instanceof Point;
}
..
 public int FPoint.hashCode() {
 return this.__get_x() * 1 + this.__get_y() * 3;
}

Generated Classes

class Point {
 public int x, y
 public int __get_x(){..}
 public boolean equals(..) {
 ..
 }
 public int hashCode(){..}
 ..
}
..

profiling
information

AspectJ
weaver

Field Accessor Facades

Accessor expressions

Mutation warnings & errors

Getters

Main Generator

Cycle handlers

Equality & hashing

Profiling

Introspectors

@Equality
class Point {
 public int x, y
}
@Equality(class=Point)
class FPoint
 extends Point {
 public int x, y;
}

JEqualityGen

advice

advice

persisted
profiling
information

reflection

n

m

n

1

Figure 2. Structure of JEqualityGen

4.3 Generating equals methods
In order to implement equality, we generate two methods, equals,
which is the main operation, and canEqual, which determines
whether its argument is an instance of the correct type. An example
of the generated methods is given in Listing 8. It is surprising to see
that it takes so much code to implement proper equality operations
for such conceptually simple classes.

The equals methods follow a specific template, and performs
the following steps:

• coerce the argument object to the correct equality type (i.e., the
type on which the equality is evaluated);

• check whether the receiver object is comparable to the argu-
ment, and conversely check whether the argument is compara-
ble to the receiver;

• profile how often fields differ between different objects, to
determine in which order they are compared; and

• (recursively) check whether each key field in the receiver object
is equal to each key field in the other object.

An example of a generated equality expression, as discussed in the
last item, is shown in Listing 6. The exact form of the equality

expression for each field depends on the type of the field, and the
code generation task was split into multiple parts, depending on the
type of the field.

If a field is of a primitive type or a simple reference type
which requires only reference equality (a class annotated with
@ReferenceEquality), the Java == operator is used for equal-
ity. An expression that evaluates to the value of the field is gener-
ated (for example this.__get_x() for field x). The selection
depends on whether the field can be accessed without the need of an
accessor, whether it needs a custom accessor, or whether it requires
the use of a standard Java accessor.

A problem which arises when comparing floats or doubles is
that nothing is equal to Float.NaN or Double.NaN. JEquali-
tyGen uses the function floatToIntBits in the case of floats
and DoubleToLongBits in the case of doubles. In the case of
an array, if the enclosing type of such array is yet another array,
the Arrays.deepEquals function is used. In the simple case
of having an array of a non-array Arrays.equals is used.

If the field is not a primitive type, the equals method needs to
be used. However, JEqualityGen also needs to make sure that the
receiver object is not null. Nullity checks are therefore added to the
generated expression.

..
(this.p2 == that.p2 || (this.p2 != null && this.

p2.equals(that.p2))) && Double.doubleToLongBits
(this.d1) == Double.doubleToLongBits(that.d1)
&& Float.floatToIntBits(this.f1) == Float.
floatToIntBits(that.f1) && this.c1 == that.c1
&& Arrays.equals(this.s, that.s) && Arrays.
deepEquals(this.s22, that.s22)

..

Listing 6. Generated equality expressions for different types
p2:Object, d1:double, f1:float, c1:char, s:1d array, s22: 2d array

..
(this.p2 == null ? 0 : this.p2.hashCode()) *

28629151 + ((int)(Double.doubleToLongBits(this.
d1) ˆ Double.doubleToLongBits(this.d1) >>> 32))
* 887503681 + Float.floatToIntBits(this.f1) *
1742810335 + (int)(this.c1) * -1807454463 +
Arrays.hashCode(this.s) * -196513505 + Arrays.
deepHashCode(this.s22) * -1796951359

..

Listing 7. Generated hashCode expression for types p2:Object,
d1:double, f1:float, c1:char, s:1d array, s22: 2d array

Finding fields that require getters. In Section 2, we have seen
that field shadowing leads to unexpected equality results. It is there-
fore necessary to add getters whenever the fields being declared are
shadowed.

Fields that need getters are identified by traversing the class
structure, noting which fields are declared at every level. If through-
out the search a field is found to be declared at more than one level,
both of these fields are added to the results set. This data is later
used to write the appropriate getters for the fields, and JEquality-
Gen always accesses these fields using the generated custom get-
ters.

4.4 Generating hashCode methods
For the hashCode method, JEqualityGen generates an integer
expression, rather than a boolean expression, but the underlying
logic is similar to that of the equality generators. As in the case of
the equality expression, dispatching is done according to the type
of the field. In the case of a primitive field, dispatch is done over
these various primitive types as follows:

Boolean The expression generated evaluates to a particular con-
stant value in the case of true and a different constant in the
case of false.

Character The character is cast to an integer.

Float The Float.floatToIntBits() function is used to get
an integer value from the Float.

Long The 32 MSBs are xor-ed with the 32 LSBs.

Double The Double.doubleToLongBits function is used
and the resulting 32 MSBs are xor-ed with the resulting 32
LSBs.

The individual expressions are then conjoined to form a Kernighan
and Ritchie multiplicative hash expression [16]. Listing 7 shows
part of a generated hashing expression for various field types. We
have chosen this hash function because it is fast. The modular de-
sign of JEqualityGen makes it easy to change the particular hashing
method. This could even be done based on runtime feedback.

private int Point.__get_x() { return this.x; }
private int FPoint.__get_x() { return this.x; }
private int Point.__get_y() { return this.y; }
private int FPoint.__get_y() { return this.y; }
public boolean Point.equals(Object other) {

if (this == other) return true;
if (other instanceof Point) {

Point that = (Point)(other);
return that.canEqual(this) &&
this.__get_y() == that.__get_y() &&
this.__get_x() == that.__get_x();

}
return false;

}
public boolean Point.canEqual(Object other) {
return other instanceof Point;

}
public boolean FPoint.equals(Object other) {
if (this == other) return true;
if (other instanceof Point) {

Point that = (Point)(other);
return that.canEqual(this) &&
this.__get_y() == that.__get_y() &&
this.__get_x() == that.__get_x();

}
return false;

}
public boolean FPoint.canEqual(Object other) {
return other instanceof Point;

}
public int Point.hashCode() {
return this.__get_y() * 1 +
this.__get_x() * 31;

}
public int FPoint.hashCode() {
return this.__get_y() * 1 +
this.__get_x() * 31;

}

Listing 8. Generated equality and hashing methods and accessors
for the Point and FPoint classes in Listing 14 and the code snippet
in Figure 2

declare warning: set(* Point.x1) &&
!withincode(Point+.new(..)):

"Point.x1 is declared as key but is being
mutated outside the constructor.";

Listing 9. Warnings are given whenever a key field is mutated
outside the constructor

Disallowing mutation of key fields. As discussed in Section 3.2,
mutating key fields leads to problems if the object is stored in a
collection which uses the hash-code, because it becomes impossi-
ble to retrieve the object if its hash-code changes. For this reason,
JEqualityGen generates warning declarations (Listing 9) that issue
mutation warnings at compilation time. These are useful since they
indicate to the programmer any locations where the mutation can
occur.

In addition, JEqualityGen generates advice, as shown in Listing
10, that ensures that once hashCode has been called, no key fields
may be mutated.

4.5 Handling Cycles
The code generated in Listing 8 does not take into consideration
potential cycles in the object graph. Of course, this is a “good
thing”: given the class declarations, it is clear that there cannot be a

private transient boolean Point.hCalled = false;

before(Point self) :
execution(* hashCode()) && target(self) {
self.hCalled = true;

}
before(Point self, int val):
if(self.hCalled && !(self.x1 == val)) &&

set(* Point.x1) && target(self) && args(val){
throw new KeyMutationException("Point.x1

has been mutated");
}

Listing 10. An exception is raised whenever a key field is mutated
if hashCode has been called already on that object

cycle, so there is no need to check for it. Hence, in order to reduce
the size and increase the speed of the generated code, JEqualityGen
makes use of a simple algorithm that statically detects whether
cycles are possible at all.

Determining whether a class might be involved in cycles. In
general, a class might be involved in a cycle if it contains a field
which may be assigned from itself. By extension, this would hap-
pen also if any of a class’s fields might in turn contain a field
assignable from the original class. This property extends itself re-
cursively.

Although not much code is required to determine such an even-
tuality, such an algorithm lends itself to bugs. Given a particular
container class and a containee (initially the same class), JEquali-
tyGen goes through each of the container class’s fields (one parent
class at a time) and sees whether any of the fields is assignable from
the containee. If the field is not a primitive type, JEqualityGen then
in turn sees whether the containee may be contained in this field.
This process is invoked recursively until all fields in the class hier-
archy are tested. Classes which have already been traversed do not
need to be traversed a second time.

Advice for cycle handling. Cycles are handled by generating ad-
vice that uses a point-cut descriptor as shown in Listing 11. The
executing advice uses one stack containing the visited objects for
every different class that may be involved in cycles. If the current
target of the point-cut is present in the stack, then the execution
has reached a cycle. In such a case, object graphs involved in the
cycle must be equal since the equality expression would have short-
circuited otherwise. This would have terminated our equality com-
putation, returning false. On the other hand, if the target object is
not found on the stack, it is pushed on the stack. The execution then
proceeds with the original equality computation and removes the
target from the stack when the computation returns. The result is fi-
nally returned.

4.6 Generating code for inaccessible classes
JEqualityGen was initially designed to only operate on classes
which the user has control over. This assumes that classes in ex-
ternal libraries that are used in the user’s code have a correct imple-
mentation of equals. This is typically not the case.

The simple approach to extending an inaccessible class is to
use an AspectJ inter-type declaration and let the AspectJ weaver
weave in the equality method. However, it is impractical to have all
libraries in the AspectJ inpath. For example, putting rt.jar in
the inpath would crash the weaver.

The approach used in JEqualityGen instead is that of extending
(i.e., sub-classing) the class and adding the actual equality logic in
the extended class. All calls to the constructor of the original class
are intercepted and replaced by calls to the extended class. This not

private transient Stack mrh = new Stack();

int around(MockCycle1 self):target(self)
&& execution(int hashCode())
&& cflowbelow(target(MockCycle1)
&& execution(int hashCode())) {

for (int i = 0; i < mrh.size(); i++)
if (self == mrh.get(i))
return 127; // breaks the cycle

mrh.push(self);
int res;
try {
res = proceed(self);

} finally {
mrh.pop();

}
return res;

}

Listing 11. Cyclic advice for a hashCode method

only solves any problems in the auto-generated equals methods
but also in any other invocations of equals on the original classes
in the user’s code.

Privileged access of classes require AspectJ to weave special
accessors into the accessed classes. Unfortunately, this entails that
the original classes are advised. Since these classes form part of the
Java library and the state would be exposed through the Java API
in a standard and consistent manner, JEqualityGen only accesses
an object’s state through its getters in the case of external libraries.

An experimental feature in AspectJ has to be used to make the
generated aspect serialisable. All fields in the aspect are however
marked as transient as these are not of any importance for
the serialisation. The result is that any relevant aspects are now
serialised with the classes they advise.

5. Runtime statistics-based optimisations
JEqualityGen can instrument the equality operations it generates in
such a way that they gather statistics about the fields in the class;
specifically, the methods keep a tally of how often each field in
each class has failed the equality operation. This can then be used
to generate optimised equality operations, simply by placing the
fields with the highest probability of failing the equality operation
at the beginning of the expression. This increases the chances of
these fields failing the equality test early, and thus short-circuiting
the equality operation.

5.1 Gathering and persisting statistics
When JEqualityGen is instructed to gather statistics about the gen-
erated code, the following steps take place:

• the code to declare the necessary data structures that record field
statistics at runtime is generated;

• the necessary code fragments that perform the profiling are
generated; and

• the code that is invoked before the program terminates is gener-
ated (see Listing 12). This code persists the profiling informa-
tion to disk.

Listing 13 shows some of the code that gathers the statistics. The
per-field equality expressions generated by the field accessor fa-
cades are also used as arguments to the tally method in our
statistics gathering classes. In order to properly gather the statistics,
the individual field equality expressions must, however, not short-
circuit, and the effects of all fields must go into the tally. However,

after() : execution(static void *..main(..)) {
try {
fieldStatistics.persist("./profileinfo.dat");
..

} catch (IOException ioe) {
..

}
}

Listing 12. Advice which is executed before the application exits

..
fieldStatistics.get("Line.p1").tally(
(this.p1 == that.p1 || (this.p1 != null && this

.p1.equals(that.p1))));
fieldStatistics.get("Line.p2").tally(
(this.p2 == that.p2 || (this.p2 != null && this

.p2.equals(that.p2))));
fieldStatistics.get("Line.d1").tally(
Double.doubleToLongBits(this.d1) == Double.

doubleToLongBits(that.d1));
..

Listing 13. Profiling code which is inter-posed in the equality
function

the functionality of the equals operation is unaffected by the pro-
filing code.

5.2 Re-generating the equality methods
The re-generation of the equality methods follows the same pro-
cess as the normal generation of the equality implementation, with
one important difference. When JEqualityGen is launched in this
mode, it reads the profiling information which was generated by a
previous run of the program. This information is used by the in-
trospectors on a per-class basis. The fields in the introspector are
supplied to the main generator sorted in an optimised way.

The sorting happens according to the statistics gathered by
the profiling code. For each field, we calculate the ratio of the
number of times its equality operation fails divided by the number
of times its equality operation succeeds. For every class, we sort the
fields according to their corresponding ratio, in descending order.
Whenever an equality operation is generated, the fields which make
up the expression are ordered in this manner.

The performance effect in the best case is exponential to the
depth of the object graph that is being compared. This can easily
happen since this optimisation is applied for every class. In turn,
the fields of each class also get this optimisation if their equality is
also generated by JEqualityGen. In practice the effect of turning on
this optimisation can be seen in Table 1.

6. Experimental Evaluation
6.1 Performance analysis
Since JEqualityGen uses code generation rather than reflection,
we certainly expected an improvement in performance. In order
to evaluate to which degree the performance improvements ma-
terialised, we wrote a benchmark that exercises the equals and
hashCode methods of a number of classes from the JFreeChart
project [4]. JFreeChart is a charting library that is part of the
DACapo Benchmark Suite [17]. It contains 1158 classes, with
8960 methods. We generated equality and hashing methods for
478 of these classes, of which 101 had cyclic handling advice
generated for. This means that 101 of these classes could poten-
tially be involved in cycles. JEqualityGen generated 25000 lines

JEG JEG w/profiling Rayside
optimisations et al. [3]

equals 2297 1108 179856
hashCode 3602 n/a 86683

Table 1. Time to run benchmark in ms

of code for this project. The benchmark exercised the equals
and hashCode methods of the the top level container class
org.jfree.chart.JFreeChart. This class contained ob-
jects of most of the classes in the project.

We compare JEqualityGen to the system presented by Rayside
et al. [3], and benchmarks were run on both of these systems. Since
the system by Rayside et al. uses caching to enhance performance,
we ran the benchmark loop several times before starting the timer.
This enabled both the JVM and the implementation of Rayside et
al. to warm up.

Table 1 lists the results of running these benchmarks on a
Lenovo T500 2.4GHz under 64-bit Debian running sun-java-6.
JEqualityGen is able to produce equals methods that are about
162 times faster than [3] and hashCode methods that are about
31 times faster.

We note that given the sheer size of JFreeChart and the com-
plexity of its class structure, invoking reflection on an entire object
graph is much slower than a direct field access. Another reason why
Rayside et al.’s solution is slower is that a lot of dispatching and
analysis is carried out at runtime, while in our case this is carried
out at code generation time. A case in point is the cycle detection
optimisation that is done at code generation time. Runtime feed-
back and re-ordering the equality expression also helps to boost the
performance of JEqualityGen’s generated code, by a factor of two.
Note that this is not applicable the same way for computing the
hash codes, because the hash code must be computed from all key
fields.

6.2 Correctness analysis
We initially planned to analyse the correctness of JEqualityGen by
statically verifying the generated bytecode. This would have al-
lowed us to prove that our implementation yields the correct notion
of equality and to compare it to a reflective solution. Unfortunately,
there are no mature Java bytecode verifiers available and therefore
we had to resort to normal testing.

In order to assess the correctness of JEqualityGen, we modified
the JFreeChart project to utilise our code generator for the equality
and hashing implementations rather than using the manual imple-
mentations. Given the size of the project, this served as a good test
case for JEqualityGen and it also influenced some of our design
decisions. There were some problems we encountered throughout
our testing, namely:

Hard-coded hash-codes Since our auto-generated hash functions
are different (but still correct), test cases expecting a specific
hash value for some objects obviously fail.

Incorrect equality implementations Some equality test cases are
not faithful to the state of the object. For example, serialising
and de-serialising the object would change the object. Other
implementations were buggy for other reasons. Some test cases
were written in such a way that a correct implementation fails.

Key mutation Whenever a key field is mutated in an object after
the hashCode method is called, an exception is raised. Un-
fortunately, this runtime check caused some tests to fail. It was
shown in Section 2 why key fields should not be allowed to
mutate.

@Equality
class Point(x: int, y: int) {
}
@Equality{val eqClass = classOf[Point]}
class FPoint(x: int, y: int) extends Point (x,y){
}

Listing 14. Skeleton of an annotated Point and FPoint classes with
equality performed at the Point level, in Scala.

Discounting for these cases, however, the modified JFreeChart im-
plementation succeeded on all other test cases.

6.3 Compatibility with other JVM languages
One of the main advantages of working at the JVM bytecode level
is that JEqualityGen is in principle independent of the actual source
language on which it is being used, as long as this compiles to the
JVM bytecode. Obviously, this is limited by AspectJ’s ability to
process this bytecode. Also note that the notion of equality will
carry over from Java, and might not be appropriate for a third
language. Existing code generators such as the generate equals()
and hashCode() feature in Eclipse only work on a specific source
language. In order to demonstrate the compatibility with other JVM
languages, we applied JEqualityGen to Scala. Listing 14 shows a
very simple Scala code snippet, which defines the same two classes
we have used in some of our previous examples. The generated
equality aspect is obviously exactly the same as the one generated
for the classes implemented in Java, which can be seen in Listing 8.

7. Conclusion and Future Work
Implementing equality and hashing operations is both tedious and
error-prone. JEqualityGen was developed specifically to address
the pitfalls associated with these operations and to relieve the de-
veloper of the burden of implementing them. Code generation tech-
nology can be employed to address this problem, making the result-
ing implementations fast, efficient, and easier to verify in principle.
Our prototypical implementation is expressive enough as a drop-in
replacement in the context of large Java applications. It can also be
integrated into the build systems of these applications with relative
ease.

Apart from the substantial performance improvement we regis-
tered in our benchmarks, an advantage of code generation is that
static analysis and formal verification tools can work with the gen-
erated code to infer some properties from the system. It is also pos-
sible for tools such as AspectJ to weave advice directly into the
generated code. Another advantage of the static analysis of code is
that we can issue warnings and errors at code generation time while
other runtime systems would throw exceptions at runtime, which is
much less convenient.

Apart from the usual object contract issues, we have addressed
other practical issues such as field shadowing, which simple tools
such as the generate hashCode() and equals() feature in Eclipse
[18] fail to handle. This code generator is also naive in the sense
that it does not concern itself with the interactions between differ-
ent classes. As a result, inheritance and cyclic structures are not
handled well. We are not aware of any other system that generates
equality methods and takes field shadowing into consideration. An-
other big advantage of JEqualityGen is that even though it generates
code, it can still be used with languages other than Java that run on
the JVM such as Scala.

JEqualityGen also works for Java source code that uses Java
generics. However, we did not tackle concurrency issues. If for
example, an object is mutated while it is being compared, the
behaviour of our equality methods would be undefined. A possible

area of improvement would be to offer the user thread-safe versions
of equality and hashing methods. In its current form, it is up to the
user to take care of concurrency.

Lastly, other methods can be generated using the same tech-
niques. These are, for example, the clone method and the
toString method. The latter is catered for in Eclipse [18]. Func-
tionality responsible for serialising objects could also be automat-
ically generated. Using code generation, serialisation is known to
run faster [19].

Acknowledgements. The research work disclosed in this publica-
tion is partially funded by a Strategic Educational Pathways Schol-
arship (Malta). The scholarship is part-financed by the European
Union – European Social Fund (ESF). B. Fischer is supported by
EPSRC grant no. EP/F052669/1. We thank D. Rayside for making
his system available for testing and Y. Smaragdakis for his com-
ments on an earlier version of this paper.

References
[1] Sun Microsystems Inc. Java Platform Standard Ed. 6.
[2] M. Vaziri, F. Tip, S. Fink, and J. Dolby. Declarative Object Identity

Using Relation Types. In ECOOP, LNCS 4609, pp. 54–78. Springer,
2007.

[3] D. Rayside, Z. Benjamin, R. Singh, J. P. Near, A. Milicevic, and
D. Jackson. Equality and hashing for (almost) free: Generating imple-
mentations from abstraction functions. In ICSE, pp. 342–352. IEEE,
2009.

[4] JFreeChart. http://www.jfree.org/jfreechart/.
[5] S. Khoshafian and G. P. Copeland. Object Identity. In OOPSLA,

SIGPLAN Notices 21(11), pp. 406–416, 1986.
[6] P. Grogono and M. Sakkinen. Copying and Comparing: Problems and

Solutions. In ECOOP, LNCS 1850, pp. 226–250. Springer, 2000.
[7] S. Abiteboul and J. Van Den Bussche. Deep equality revisited. De-

ductive and Object-Oriented Databases, LNCS 1013, pp. 213–228.
Springer, 1995.

[8] D. Hovemeyer and W. Pugh. Finding Bugs is Easy. ACM SIGPLAN
Notices, 39(12):92–106, 2004.

[9] M. Odersky, L. Spoon, and B. Venners. Programming in Scala: A
Comprehensive Step-by-step Guide. Artima, 2008.

[10] J. Bloch. Effective Java (2nd Edition). Prentice Hall, 2008.
[11] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.
[12] J. Jones and R. Smith. Automated auditing of design principle ad-

herence. In Proc. ACM Southeast Regional Conference, pp. 158–159.
ACM, 2004.

[13] D. Zook, S. S. Huang, and Y. Smaragdakis. Generating AspectJ Pro-
grams with Meta-AspectJ. In GPCE, LNCS 3286, pp. 1–18. Springer,
2004.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An Overview of AspectJ. In ECOOP, LNCS 2072,
pp. 327–353. Springer, 2001.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns
- Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[16] B. W. Kernighan and D. M. Ritchie. The C Programming Language
(2nd edition). Prentice Hall, 1988.

[17] S. M. Blackburn et al. The DaCapo benchmarks: Java benchmarking
development and analysis. In OOPSLA, pp. 169–190. ACM, 2006.

[18] Eclipse IDE. http://www.eclipse.org/.
[19] B. Aktemur, J. Jones, S. N. Kamin, and L. Clausen. Optimizing

Marshalling by Run-Time Program Generation. In GPCE, LNCS
3676, pp. 221–236. Springer, 2005.

