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Abstract

Energy models can be constructed by characterizing the energy
consumed when executing each instruction in a processor’s instruc-
tion set. This can be used to determine how much energy is required
to execute a sequence of assembly instructions, without the need to
instrument or measure hardware.

However, statically analyzing low-level program structures is
hard, and the gap between the high-level program structure and
the low-level energy models needs to be bridged. We have devel-
oped techniques for performing a static analysis on the intermedi-
ate compiler representations of a program. Specifically, we target
LLVM IR, a representation used by modern compilers, including
Clang. Using these techniques we can automatically infer an esti-
mate of the energy consumed when running a function under dif-
ferent platforms and compilers.

One of the challenges in doing so is that of determining the en-
ergy cost of executing LLVM IR program segments, for which we
have developed two different approaches. When this information is
used in conjunction with our analysis, we are able to infer energy
formulae that characterize the energy consumption for a particular
program. This approach can be applied to any languages target-
ing the LLVM toolchain, including C and XC or architectures such
as ARM Cortex-M or XMOS xCORE, with a focus towards em-
bedded platforms. Our techniques are validated on these platforms
by comparing the static analysis results to the physical measure-
ments taken from the hardware. Static energy consumption esti-
mation enables energy-aware software development by providing
instant feedback to the developer, without requiring simulations or
hardware knowledge.

Categories and Subject Descriptors
Performance measures

D.2.8 [Software Metrics]:

General Terms Energy estimation, Software Analysis

1. Introduction

In embedded systems, low energy consumption is a very important
requirement. The software running on these systems has a profound
effect on the energy consumed. The design of software and algo-
rithms, the programming language and the compiler together with
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its optimization level all contribute towards the energy consump-
tion of an application. Measuring such consumption, however, re-
quires hardware specific knowledge and instrumentation, making
such measurements challenging for software engineers.

Estimations of energy consumption of programs are very useful
to software engineers, so that they can understand the effect of their
code on the energy consumption of the final system, without the
need to instrument or even have the system. Accurate energy con-
sumption and timing analysis of programs involves analyzing low-
level machine code representations. However, programs are written
in high-level languages with rich abstraction mechanisms, and the
relation between the two is often blurred. For instance, optimiza-
tions such as dead code elimination, various kinds of code motion,
inlining and other clever loop optimization techniques obfuscate
the structure of the program and make the resultant code difficult
to analyze [27].

In this paper, we develop a static analyzer that works on the
intermediate compiler representation of the program (LLVM IR).
Our analysis is based on a well-developed approach in which re-
cursive equations (cost relations) are extracted from a program,
representing the cost of running the program in terms of its in-
put [2, 3, 25, 32]. These cost relations (CRs) are finally converted
to closed-form, i.e. without recurrences, by means of a solver. For
example, we can analyze the following program.

void proc(int v[], int 1) {
for (int i = 0; i < 1; i++)
if(v[i] & 1)
0dd();
else
even();

The following CRs are extracted from the program,

ifl >0
ift >IANL>0
ifit <IANL>0
ifit <IANL>0

where [ denotes the length of the array v, ¢ stands for the counter of
the loop and Cproc, Coaq and Ceyer, approximate, respectively, the
costs of executing their corresponding methods. The constraints,
denoted on the right hand side of the relations, specify a condition
that must be true for the cost relation to be applicable. For instance,
relation (a) corresponds to the cost of executing proc with an array
of length greater than 0 (stated in the condition [ > 0), where cost
k1 is accumulated to the cost of executing the loop, given by C'sor..
Note that the transition into (¢) and (d) is non deterministic. The
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constants ki, ..., ks take different values depending on the cost
model that one adopts. In this paper, our cost model focuses on
energy. These constants are obtained from energy models created
at the Instruction Set Architecture (ISA) level [13]. Such models
have previously been applied to analysis at the same level [15, 18],
and in this paper we propagate this up to the LLVM level.

Many modern compilers such as Clang or XCC are built us-
ing the LLVM framework. These internally transform source pro-
grams into intermediate compiler representations, which are more
amenable to analysis than either source or machine level programs.
We show how resource consumption analysis techniques can be
adapted and applied to programming languages targeting LLVM
IR (such as C or XC [31]) by reusing some of the existing ma-
chinery available in the compiler framework (for instance LLVM
analysis passes). We show how cost relations can be extracted from
programs, such that these can be solved using an existing solver
[3]. Specifically, we focus on optimized LLVM IR, that has been
compiled with optimization levels used in production software (i.e.
02 or higher).

Time is a significant component of energy consumption, in that
a program that computes its result quicker will typically consume
less energy by virtue of a shorter run-time. However, the corre-
lation between time and energy varies between architectures, and
is related to the complexity of the processor’s pipeline [23]. For
example, one of the target architectures for this paper exhibits an
approximately 2x difference in energy depending on the instruc-
tions that are executed, with a similar relationship for the number
of threads executed upon it [13]. Analysis of system energy and
not just of execution time will therefore garner better information
on the energy characteristics of a program.

—
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Figure 1. Tllustration of the analysis toolchain.

Energy models can be constructed for a processor’s instruction
set; however this information needs to be constructed, or propa-
gated to a higher level program representation in order to bene-
fit our analysis mechanism. We propose two different techniques
(Section 4), for assigning energy to a higher level program repre-
sentation (LLVM IR). We first propose a mechanism for mapping
program segments at ISA level to program segments at LLVM IR
level. Using this mapping, we can perform a multi level program
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analysis where we consider the LLVM IR for the structure and se-
mantics of the program and the ISA instructions for the physical
effect on the hardware. We also propose an alternative technique,
of determining the instruction energy model directly at the LLVM
IR level. This is based on empirical data and domain knowledge of
the compiler backend and underlying processor.

This paper focuses on static analysis of code for processors
that are embedded or deeply embedded. Such processors do not
typically feature cache hierarchies. They have small amounts of
static-RAM and possibly flash memory available to them. This
constrains the application space, but the motivation for analysing
software that targets these processors is greater, because these types
of embedded systems often have the strictest energy consumption
requirements.

The analysis toolchain is illustrated in Figure 1. The static re-
source consumption analysis mechanism is described in Section 3.
Parts of this mechanism perform a symbolic execution of LLVM
IR, which is described in Section 2. The techniques described are
built into a tool, which can be integrated into the build process, and
which statically estimates the energy consumption of an embedded
program (and its constituent parts, such as functions) as a mathe-
matical function on several parameters of the input data. Our ap-
proach is validated in Section 5 on a number of embedded systems
benchmarks, on both xCORE and Cortex-M platforms. Finally, we
describe related work in Section 6 and conclude in Section 7.

2. Structure and interpretation of LLVM IR

In this section we describe the core language and an important tech-
nique we utilize in the resource consumption analysis mechanism
(Section 3), which infers energy formulae given an LLVM IR pro-
gram.

2.1 The LLVM IR language

LLVM IR is a Static Single Assignment (SSA) based representa-
tion. This is used in a number of compilers, and is designed to rep-
resent high-level languages. It consists of IR instructions arranged
in basic blocks. A basic block BB over a CFG has a unique name
and is a maximal sequence of instructions, inst; through inst,,
such that all instructions up to inst,,—1 are not branch or return in-
structions and inst,, is br or ret. Basic blocks have a single entry
point.

For presentation purposes, we first formalize a simple calculus
of LLVM IR, based on the following syntax:

inst = br p BB1 BB
| z =opai..an (generic op., no side-effects)
| zT=¢ <BB17561>"<BB’M$">

|z =call fai. an

(conditional branch)

(phi functions)

| x = memload (dynamic memory load)

| memstore (dynamic memory store)
| reta

We use metavariable names p, f, a, x to describe predicates, func-
tion names, generic arguments and variables respectively. The con-
crete semantics of the instructions are modeled on the actual LLVM
IR semantics [35]. Instruction op represents any side effect free
operation such as icmp or add in LLVM. LLVM IR has explicit
¢ instructions, which are present since the code is in static single
assignment (SSA) form. The ¢ instruction merges the multiple in-
ward data flow paths associated with a variable at the entry of a
basic block. It takes a list of pairs as arguments, with one pair for
each predecessor basic block of the current block. Each pair con-
tains a reference to a predecessor block together with the variable
that is propagated to the current block. The only place where a ¢
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can appear is at the beginning of a basic block. Two interesting
instructions are memload and memstore. These represent any dy-
namic memory load and store operation respectively. For instance,
getelementptr and load are some examples of instructions rep-
resented by memload. These instructions typically compute point-
ers dynamically and load data from memory. In our abstract seman-
tics of LLVM IR, we therefore treat variables assigned with values
dynamically loaded from memory as unknown (denoted ‘?*). All
call instructions are assumed to eventually return.

2.2 Symbolic evaluation of LLVM IR variables

At the core of our resource consumption analysis mechanism of
LLVM IR is a symbolic evaluation function seval. Given a block
of code BB, and a variable z, seval( BB, z) symbolically executes
this block, producing a slice [34] of the block with respect to z.
During this static analysis phase, we apply an abstract semantics of
LLVM IR, which abstracts away dynamic memory reads and writes
i.e., memload and memstore. This has the effect of producing sim-
ple expressions, which can be handled by the PUBS solver [3]. The
algorithm proceeds by starting at the last assignment of x in the
block, and evaluates the assigned expression using this semantics,
recursively evaluating all its dependencies until an expression or
variable outside the block is reached. For example, given the fol-
lowing snippet:

LoopIncrement:
%postinc = add i32 %i.0, 1
%exitcond = icmp eq i32 Ypostinc, %1
br il %exitcond, label %return, label %LoopBody

seval(. .. %hexitcond) is (%i.0+1) ==%1, while in the following
snippet

iftrue2:
call void @odd()
br label %LoopIncrement

seval(...,%i.0) would evaluate to %i.0, because there are no as-
signments to %i.O0.

3. Resource Consumption Analysis for LLVM IR

The techniques described here are used to infer cost relations [3].
Cost relations are recursively defined and closely follow the flow
of the program. We need to solve these relations because what we
actually want to infer is a closed form formula modeling the cost,
parametric to any relevant input arguments to the program. These
solvers typically work with simplified control flow graph structures,
and therefore we must first perform some simplifications on the
control flow graphs, as described in Section 3.3. The analysis then
infers block arguments by using symbolic evaluation as described
in Section 2.2.

3.1 Inferring block arguments

Block arguments characterize the input data that flows into the
block, and is either consumed (killed) or propagated to another
block or function. Unfortunately, solving multi-variate cost rela-
tions and recurrence relations automatically is still an open prob-
lem, and the fewer arguments each relation has, the easier it is to
solve these. For this reason, we designed an analysis algorithm to
minimize the block arguments before inferring the cost relations.
The algorithm for inferring block arguments is a data flow anal-
ysis algorithm. We use a standard means to describe this algorithm,
as in [21]. We define a data flow analysis function gen, which,
given a basic block, returns the variables of interest in that block:

gen(BB) = geny,,(BB) U gen,, (BB)

Ay

14

The function gen,,;;, returns the input arguments that affect the
branching in a block BB, composed of instructions inst; through
instn. geng, returns the variables that affect the input to any
external calls in the block. gen,;;. is defined as follows:

ref (seval( BB, p))

if inst, = [brp ..
geny,,(BB) = {@ [ )

otherwise

The function ref returns all variables referred to in the symbolically
evaluated expression given as argument, for example ref (z >
(y + 3)) returns {z,y}. We also define function gen, . This
returns all the input arguments that affect the parameters given to
the function, and is defined as:

genfn(BB) =
O U ref (seval(BB,a;)) if insty is [z = call f a1 .. am]
=1
k=1 (0 otherwise

The data flow analysis function kill is defined as:

{z}
{z}
{z}
0

if inst isx = call ...
if instisz =op ...

kill(BB) = |
k=1

if insty is x = memload ...
otherwise

Finally, we combine gen and k:ll by utilizing a transfer func-
tion, which is inlined into args,,, and args,,,. These compute
the relevant block arguments utilized by the resource consumption
analysis. args,,,(BB) is defined as the function’s arguments if BB
is the function’s first block. In all other cases, args,,, and args
are defined as:

args,,.(BB) = U phimapps, sy (args,;, (BB'))
BB’ €enext(BB)
args;, (BB) = (args,,.(BB) — kill(BB)) U gen(BB)

in out

where phimap maps variables between adjacent blocks BB and
BB’ based on the ¢ instructions in BB’.

Functions args;, and args,,, are recomputed until their least
fixpoint is found. Finally, the block arguments are found in args,,, .
The analysis explained in this section is closely related to live
variable analysis. A crucial difference, however, is in the function
gen. In our case, this returns a smaller subset of variables than live
variable analysis i.e., only the ones that may affect control flow.

3.2 Generating and solving cost relations

In order to generate cost relations we need to characterize the en-
ergy exerted by executing the instructions in a single block. We also
need to model the continuations of each block. Continuations, ex-
pressed as calls to other cost relations, arise from either branching
at the end of a block, or from function calls in the middle of a block.
For instance, consider the following LLVM IR block:

LoopIncrement:
%postinc = add i32 %i.0, 1
%hexitcond = icmp eq i32 Ypostinc, %1
br il %exitcond, label Yreturn, label %LoopBody

This would translate to the following relation:
Cri(i) = Co + Cres(i + 1)
Cri(i) =C1+ Cue(i + 1)

1fz+1:a1
ifi+17€a1,
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where Cr1, Cret and Crp characterize the energy exerted when
running the blocks LoopIncrement, return and LoopBody re-
spectively. We therefore refer to Cie¢ and Crp as continuations of
CL1. Expressing these calls to other cost relations involves eval-
vating their arguments, which cannot be done without evaluating
the program. Instead, by symbolically executing the block, we can
express the arguments of the continuation in terms of the input ar-
guments to the block. In order to do so, we perform symbolic eval-
uation using the function seval.

The cost relations, extracted from recursive programs using the
techniques discussed in this section, can be automatically trans-
formed to closed form by the PUBS solver. PUBS infers closed
form solutions recursively, starting with the inner-most relations,
using various techniques such as computing ranking functions and
loop invariants. The results of the intermediate steps are then math-
ematically composed to solve the whole set of given cost relations.

There are cases where the optimized program structures pro-
duced by LLVM based compilers prevent the cost relation solvers
from finding unique cover points in the structure of the cost rela-
tions. In order to solve this problem, we need to perform transfor-
mations to the call graph upon which we construct our cost rela-
tions. This is described in the next section.

3.3 Transformations for control flow graphs

After compilation, nested loop program structures are mangled by
compiler optimizations. When the resulting Control Flow Graph
(CFQ) is directly used to produce CRes, it is usually not possible
to infer closed form solutions. For instance PUBS cannot handle
complex CFGs, and therefore in order to analyze programs with
nested loops, the CFG needs to be simplified. The simplification is
done at an early using the following steps:

1. Identify a loop’s CFG, A, that has nested loops.
2. Identify the sub-CFG, B, of A corresponding to the inner loop.

3. Extract B out of A, so that B is a separate CFG. This can be
thought of as a new function with multiple return points. Hence
B’s exit edges are removed.

4. In A, in the place where B used to be, keep the continuation to
B. Append a continuation to B’s exit targets to B’s caller in A.

In order to perform the first two steps, we need to identify the
loops in the CFG. While LLVM has specific passes to do so, we
had better success when using the algorithm described in [33]. As
an example, we show how these steps can be used to transform the
CFG of a simple insertion sort, as shown in Listing 1. The original
CFG of this program, when compiled using clang with optimiza-
tion level 02 is shown in Figure 2 (left). In this CFG, the nested
loops are identified, which also involves identifying their corre-
sponding entries, re-entries, exit and loop headers. Here, blocks
bbl, bb2 and .backedge form the inner loop. These blocks are
hoisted and the exit edge from .backedge (dotted) is eliminated.
Instead, .loopexit is then called after bb1 “returns” (Figure 2).

The CFG simplifications described in this section preserve the
same order of operations when applied to an existing CFG com-
piled from typical while or for using clang or xcc. This means
that the program called in the left-side of Figure 2 will consume as
much energy as the program in the right-side of Figure 2. The only
limitation of this approach is when an induction variable of an outer
loop is modified in an inner loop. In this case the transformation
cannot occur, however we have not encountered real benchmarks
where this takes place.

In order to verify the transformation with respect to energy, let
us consider a typical while or for loop and show that the same
sequence of blocks is called after the transformation takes place.
We can assume that such a loop has a single header, but may
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void sort(int numbers[], int size) {
int i=size, j, temp;
while(j = i--)
while(j--)
if (numbers[j] > numbers[i]) {
temp = numbers[i];
numbers[i] = numbers([j];
numbers[j] = temp;
}
}

Listing 1. This insertion sort demonstrates that certain classes of
programs require further analysis or transformation.

bbo: bbo:

TTF

/

.preheader.Ir.ph:

.preheader.Ir.ph:

Ir.ph:
y
bbl: Ir.ph: ._Crit_edge:
( .loopexit: bb1:
T|F T[F
T F /
: bb2:
v
.loopexit:
T [ F

z .backedge:
T | F

Figure 2. CFG of an insertion sort compiled using clang with
optimization level 02 before (left) and after simplification (right).

have multiple exits or reentries. However, the induction variables
of the outer loops are not modified in the inner loops. After the
transformation takes place on a nested loop structure (B inside A),
B is still called from A, however B’s exit edges are now removed.
The target of B’s exit edges will still be called after B completes.
This is because we have appended a continuation in A to this target,
in Step 4. Hence all blocks will be called in the same sequence. The
argument above can be inductively applied to loops with arbitrary
nesting levels.

4. Computing energy cost of LLVM IR blocks

The intermediate representation used by LLVM is architecture in-
dependent. Any given LLVM IR sequence can be passed to one
of many different backends, including ISAs [16]. The exact im-
plementation of the ISA determines the energy consumed by each
instruction that is executed. Thus, the conversion to machine code,
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together with the processor implementation, affects the energy con-
sumption of an instruction at the LLVM IR level.

For static analysis of LLVM IR to produce useful energy formu-
lae for programs, a method of assigning an energy cost to an LLVM
IR segment must be used. Two possible methods are demonstrated
in this paper, both having their advantages and disadvantages:

1. ISA energy model w/mapping. LLVM IR is mapped to its corre-
sponding ISA instructions and the energy cost is obtained from
the ISA level cost model. The advantage is that it is simpler to
characterize at ISA level. However, this requires an additional
step to correlate LLVM with ISA instructions.

2. LLVM energy model. Attributing costs directly to LLVM IR re-
moves the need for a mapping. However, it necessarily simpli-
fies the energy consumption characteristics, reducing accuracy.

In principle, both methods can be explored for both architec-
tures. This paper utilizes an ISA level model for the XMOS pro-
cessor whereas The Cortex-M is modeled at the LLVM IR level
directly.

4.1 XMOS XS1-L ISA level modeling

The aim of ISA level modeling is to associate machine instructions
with an energy cost. To achieve this, energy consumption samples
must be collected and an appropriate representation of the under-
lying hardware must be used as a basis for the model. A single-
threaded model, such as that defined by Tiwari [28] and expressed
in Equation 1, describes the energy of a sequence of instructions,
or program.

Eprog = Z (B:N;) + Z (O4,i Ni5) + Z Ey,

i€ISA i,jEISA k€ext

(€3]

The program’s energy, Ejprog, is first formed from the base cost, B;,
of all instructions, ¢, in the ISA, multiplied by the occurrences, N;,
of each instruction. For each transition in a sequence of instruc-
tions, the overhead, O; ;, of switching from instruction ¢ to instruc-
tion 7, multiplied by the number of times the combinations of 7 and
j,ocecurs INV; ; times. Finally, for a set of k external effects, the cost
of each of these effects, £, is added. For example, these external
effects may represent the cache and memory costs, based on the
cache hit rate statistics of the program.

The XS1-L architecture implements multi-threading in a hard-
ware pipeline. Even for single-threaded programs, we need to con-
sider the behavior of this multi-threaded pipeline. The power of
individual instructions varies by up to 2x, with multi-threading
introducing up to a 1.6x increase with a 4x performance boost.
This means execution time and energy are related in a more com-
plex way than a simpler single-threaded architecture. The model
for the XS1-L is built upon existing work of [29] and the more de-
tailed [26], which obtain model data through the energy measure-
ment of specific instruction sequences, and create a representation
of some of the processor’s internal structure in the model equa-
tions. A full description of the XS1-L’s energy characteristics and
the model is given in [13].

To extend a Tiwari style approach to model the XS1-L proces-
sor, two new characteristics must be accounted for: idle time and
concurrency. The XS1 ISA has a number of event-driven instruc-
tions, which can result in the processor executing no instructions
for a period of time, until the event occurs. Furthermore, the multi-
threaded pipeline permits only one instruction from a given thread
to be present in the pipeline at any one time. These changes are ex-
pressed in Equation 2. Here, the energy exerted by running a pro-
gram depends on a base power, Phase, Which represents the energy
cost when no instructions are executed, multiplied by the number
of idle periods, Nigi.. The clock period of the processor, T¢i is also
introduced, to allow different clock speeds to be considered. The

Ay

16

inter-instruction overhead, previously described in Equation 1 as
O,,;, is generalized to a constant overhead, O, due to the unpre-
dictability of instruction interaction between threads. For each in-
struction, the base cost is added to the instruction cost, F;, which
is scaled by the overhead and an additional scaling factor based on
the number of active threads, M;. This is multiplied by the number
of occurrences of this instruction at ¢ threads, IV; ;+ and the clock
period, Te. This is done for the varying number of threads, ¢ that
may be active in the program over its lifetime.

Eprog = Boase Nidie Teik

Ny
+3 0 (MPO + Prae) x (NiiTur))  (2)

t=1 i€ISA

The multi-threaded ISA level model for the XS1-L requires that for
each level of concurrency, ¢, the number of instructions executed
at that level should be known, or estimated. If a single threaded
program is run on its own on the XS1-L and there are no idle
periods, then Equation 2 simplifies to Equation 3, where the idle
accounting is removed, and only the first threading level, ¢ = 1, is
considered.

Eprog = Z ((MIPzO + Pbase) X (sz‘clk))

i€ISA

3

The current analysis effort focuses upon single threaded experi-
ments, thus Equation 3 can be used. Multi-threaded analysis is pro-
posed as future work in Section 7. Temperature variation in the
device is not captured in this model. However, prolonged testing
of the target hardware showed no significant temperature changes,
or associated affects, that would influence the single-threaded tests
performed in this work.

4.2 XMOS LLVM IR energy characterization by mapping

To enable the analysis at the LLVM IR level we need a mecha-
nism to propagate the existing energy model at the ISA level up
to the LLVM IR level. The mapping technique described in this
section creates a fine grained mapping between segments of ISA
instructions to LLVM IR instructions, in order to enable the energy
characterization of each LLVM IR instruction in a program. A full
description of the mapping techniques is given in [8].

Our mapping technique leverages the existing debug mecha-
nism in the XMOS compiler toolchain. This mechanism is origi-
nally meant to facilitate the debugging process of an application,
particularly when stepping through a program line by line. During
the lowering phase of the compilation process, the LLVM IR code
is transformed to the specific ISA code by the backend. The de-
bug information (DI) is also stored alongside with the ISA code
using the DWAREF standard [1], a standardized debugging data for-
mat used by many compilers and debuggers to support source level
debugging. By tracking this information we can extract an n : m
relationship between the two levels, because one source code in-
struction can be related to many different sequences LLVM IR in-
structions and therefore many different sequences of ISA instruc-
tions. Because this n : m relation complicates static analysis, there
is a need for a more fine grained mapping.

To address this issue, we created an LLVM pass that traverses
the LLVM IR and replaces the Source Location Information with
LLVM IR location information. This occurs after the optimization
passes, but before the lowering phases. The lowering phases and
platform-specific optimizations inside LLVM based compilers do
not alter the structure of the program, and therefore the structure
of optimized LLVM IR closely resembles the structure of the ISA
program. In this way, we can extract a 1 : m relationship between
the mapping of LLVM IR instructions and ISA instructions. After a
mapping is extracted for a particular program, the associated energy
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values for the ISA instructions corresponding to a specific LLVM
IR instruction are aggregated and then associated with the LLVM
IR instruction, and finally to every LLVM IR block.

Although we use the XMOS tool-chain for the mapper tool, the
approach is generic and transferable, due to the use of the common
LLVM optimizer and code generator, and the use of the DWARF
standardized debugging data format, used by many compilers and
debuggers to support source layer debugging.

4.3 LLVM IR energy model for ARM

An energy model for ARM Cortex-M series is applied directly at
the LLVM IR level, based upon empirical energy measurement
data, and knowledge of both the processor architecture and the
compiler backend. The Cortex-M3 model is for the most part a
simplification of the Tiwari model [28], applied at the LLVM IR
level. The processor does not feature a cache, so it is not neces-
sary to model cache misses as external effects. The effect of the
switching cost between instructions is approximated into the actual
instruction cost, rather than assigning a unique overhead for each
instruction pairing.

Through analysis of energy measurements for a large set of
the target ISA instructions, it was found that LLVM IR instruc-
tions, when compiled on this platform, can be segmented into four
groups: memory, M, program flow, B, division, D, and all other
instructions, GG. The LLVM IR syntax described in Section 2 can
be related to these groupings. In particular, br, call and ret can be
combined into group B; memload and memstore are members of
M the subset of op relating to division make up group D; and
finally, ¢ and all remembering members of op form group G.

This yields an equation, which accumulates the energy, Ejroq,
consumed by a program based on the number of instructions ex-
ecuted from each group. This is denoted in Equation 4, where E;
is the energy cost of a single instruction in group %, and N; is the
number of instructions executed in that group.

>

i€e{M,B,D,G}

Eprog = E:N; @)

In addition, there are a number of other factors that affect energy,
due to the relation between the LLVM IR and the ISA:

1. Variadic arguments. LLVM has instructions with variadic ar-
guments. Typically, the number of arguments in the instruction
affects the energy consumed in a linear manner.

2. Data types. LLVM operations op can be performed on values
of different data types. If the data type is larger than 32 bits, or
is floating point, this will translate into a larger number of ISA
instructions on a Cortex-M with no floating point unit.

3. Predicated instructions. The Cortex-M processor is capable
of executing predicated instruction sequences. In some cases,
short LLVM IR blocks originating from ternary expressions in
the original source code are directly translated to a number of
predicated instructions in the ARM ISA. Therefore, the number
of ISA instructions generated could be less than the instructions
in LLVM IR, and the static analysis over-approximates the
energy consumption of these blocks.

Factors (1) and (2) can be accounted for by parameterizing the
LLVM IR energy model. For instance, consider the following call
instruction:

| %6 = call i32 @min(i32 %boptmp88, i32 Yboptmp96)
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Benchmark

base64

mac
levenshtein
insertion sort
matrix multiply
jpegdct

X X X X X X | T
X X X

X X X X X X

X X X

Table 1. Benchmark Characteristics.

This translates to a single branch instruction in the ARM ISA,
with surrounding register moves to ensure the correct calling con-
vention:

mov r0, r4 # move argl into r0

mov rl, rb # move arg2 into ril

bl min # call min

mov r4, r0 # move the result into ré

As we can see, the energy consumed by an LLVM call instruc-
tion is parametric in the number and types of the arguments and
return value.

5. Experimental Evaluation

We have selected a series of benchmarks of core algorithmic func-
tions, particularly from the BEEBS [22] and MDH WCET bench-
mark [9] suites. These are collections of open source benchmarks
for deeply embedded systems, where the activities performed in
these benchmarks are typical of such systems. Analysing bench-
marks of this size and with their particular characteristics is there-
fore a good means of evaluating our analysis technique in order to
demonstrate its usefulness within the embedded systems software
space. The benchmarks are single threaded, reflecting the scope of
the analysis performed in this paper. Minimal modifications were
made to allow integration into our test harness. Table 1 summarizes
the characteristics of the benchmarks, and the meaning of the last
5 columns is as follows: (L) contains loops, (NL) contains nested
loops, (A) uses arrays and/or matrices, (B) contains bitwise opera-
tions, (C) contains loops with complex control flow predicates.

In order to show that our techniques are applicable to multiple
languages and platforms, we have ported some of the benchmarks
from C to XC. Porting C code to XC typically does not involve
rewriting, since the syntax is very similar and they both use the
same preprocessors. However, since XC does not provide pointers,
some changes need to be made to the benchmarks during the port-
ing process. For the benchmarks that run on the XCORE, we have
used the XC compiler, version 13. For Cortex-M benchmarks we
have used Clang version 3.5. We proceed by describing the bench-
marks. In both cases, the benchmarks are compiled under optimiza-
tion level 02.

Insertion sort. The code of the main function is shown in Fig-
ure 1. The energy exerted by the insertion sort partly depends on
how many swaps need to take place, and this is dependent on the
actual data present inside the array. Since PUBS infers a formula
representing an upper bound of the closed form solution, we will
be measuring the energy consumed while sorting a reverse-ordered
list, and comparing this to the statically inferred formula. Note that
the number of iterations in the inner loop depends on an induction
variable in the outer loop. This benchmark is parameterized by the
length of the list to be sorted, P.

Matrix multiply (BEEBS/MDH WCET). We modified this so
that it could work with matrices of various sizes. The matrices are
all square, of size P.
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Figure 3. The measurement results and static analysis for the

XMOS processor.

Base64 encode. Computes the base64 encoding' as a string,
given an input string of length P.

MAC (MDH WCET). Dot product of two vectors together with
sum of squares. Parameterized by the length of the vectors, P.

Jpegdct (MDH WCET). Performs a JPEG discrete cosine trans-
form. Taken from the MDH WCET benchmark suite. This bench-
mark is not parameterized.

Levenshtein distance (BEEBS). Computes the minimum num-
ber of edits to change one string into another. The lengths of the
two strings are parameterized with the variables A and B.

5.1 Experimental Setup

For both ARM and XMOS platforms, power measurement data is
collected by using instrumented power supplies, a power sense IC
and an embedded system running control and data collection soft-
ware. The implementations differ, but are structurally very similar.
Both of these periodically calculate the power (using Equation 5)
during a test run, by sampling the voltage on either side of a shunt
resistor (Vous and Vinune) to determine the supplied current.

‘/bus - ‘/;hunl

i (%)
shunt

For the Cortex-M processor, the measurements are taken on an
ST Microelectronics STM32VLDISCOVERY board while for the
xCORE, a custom XMOS board with an XS1-L based XS1-U16A
chip is used.

P=1X Vs where [ =

5.2 Results

The results for the XMOS xCORE and ARM Cortex-M proces-
sors are shown in Figures 3 and 4, respectively. These graphs show

! Posted by user2859193 on stackoverflow.com/questions/342409
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Figure 4. The measurement results and static analysis for the
Cortex-M processor.

void function(int A, int B) {
int i;

if(A < B) k2
for(i = 2%A; i >= 0; i--)

else k3
for(i = B; i >= 0; i--)

Figure 5. Example program of where the analysis infers a max
formula, together with its CFG

the insertion sort, matrix multiplication and mac benchmarks, with
data series for the static analysis results and actual energy measure-
ments. The static analysis closely fits the empirical results, validat-
ing our approach. Table 2 shows the formulae and final errors for all
benchmarks. Overall, the final error is typically less than 10% and
20% on the XMOS and ARM platforms respectively, showing that
the general trend of the static analysis results can be relied upon to
give an estimate of the energy consumption. We explain the sources
of error in our results below:

Simple LLVM IR energy model (ARM). For the case of Cortex-
M, the errors in the analysis mostly stem from the greatly simplified
model of energy consumption in the Cortex-M. The LLVM IR en-
ergy model used for the Cortex-M assigns an energy cost to each
IR instruction. Therefore, when an IR instruction expands to un-
expected, or many ISA level instructions, the energy consumption
can be inaccurate. In particular, for base64, ternary operators are
heavily used inside its main loop. In LLVM IR, this introduces a
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Benchmarks [22] Formulae Final error (%)

ARM (n]) XMOS (nJ) ARM  XMOS
base64 158 +94- | 52| 1270 + 734 - | £ | 28.0 1.1
mac 23P + 14 133P + 192 -1.7 10.1
levenshtein 47TAB + 14A + 31B + 44  559AB + 78A + 571 + max(225B, 180B + 213) 7.0 0.4
insertion sort 25P? 4+ 11P + 7.1 105P% 4+ 30P + 75 11.1 3.0
matrix multiply ~ 20P3 4 13P% + 97P + 84  144P® + 200P% + 77P + 332 3.3 3.4
jpegdct 54 mJ* 463 mJ* 8.5 2.6

¥ This benchmark was not parameteric, thus is not parameterised.

Table 2. Formulae and error values for each benchmark.

number of short conditional blocks inside this loop. These multi-
ple basic blocks in LLVM IR are translated to a smaller number
of predicated instructions in the ARM ISA by the compiler, so the
static analysis will over approximate the energy consumed.

Measurement error. Measurement errors are introduced from en-
vironmental factors such as temperature and power supply fluctua-
tions. The tolerance of the components is also another factor. The
test harness contributes error too, as it must call a function repeat-
edly in order to get its energy measurements. The loop surrounding
this function, together with the act of calling can be a significant
overhead when the amount of computation inside the function is
low. In fact, we can see that in all cases, the relative error converges
to a single error result. This is expected because in all of the bench-
marks, the parameter controls the number of iterations performed
in one or more loops. As the parameter increases, the difference
in the constant energy overhead is minimized, with respect to the
energy consumption of the function under test. Measurement runs
were run numerous times to ensure consistency of results within
the expected error margins described above.

Data flow through the processor’s execution units. The energy
models for the XxCORE and ARM assume a random distribution of
operand data. In practice, however, operations such as logical tests,
bit-manipulation and instructions performed on shorter data types
such as char will not use the full bit-range of the data path. In
cases such as these, energy consumption will be lower, therefore
introducing some estimation inaccuracy.

LLVM IR to ISA mapping (xCORE). In the case of the xCORE,
the overall results are better than that of the Cortex-M. This is due
to a more accurate assignment of energy values to LLVM-IR in-
structions, which the mapper can produce for each individual pro-
gram, as described in Section 4.2. Nevertheless, the mapper intro-
duces analysis error. For instance, the mapper does not consider
instruction scheduling on the processor, where an instruction fetch
stall can happen in some limited scenarios. This can be addressed
by performing a further local analysis on the ISA code to deter-
mine the possible locations where this happens, and adjusting the
energy accordingly. Another problem arises when mapping LLVM
IR phi instructions to the “corresponding” ISA code. Copy instruc-
tions at ISA level, attributed to LLVM IR phi instructions inside
a loop may be hoisted out of loops. The hoisted ISA cost is thus
counted for each loop iteration, leading to an overestimate. This
phenomenon was partially addressed by automatically adjusting the
energy of phi instructions during the mapping.

Static analysis and data dependence. Programs where the be-
havior and state depends on complex properties of the actual input
data are problematic for static resource consumption analysis. An
extreme example of such a program would be an interpreter. The
execution time of an interpreter not only depends on the size of the
program file it is supplied, but also on the program represented in
this file. A more typical example would be the euclidean algorithm
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int distances[MAX];

;| void sortbysimilarity(char *word, int word_len,

char *dictionary[], int dictword_len,
int n_strings)

{
int i = n_strings;
while(i--) {
distances[i] = levenshtein(word,
dictionary[i], word_len,
dictword_len);
}
sort(distances, dictionary, n_strings);
}

Listing 2. Sort by similarity function, demonstrating that the
analysis can be composed across multiple functions.

(gcd(a, b)), where the number of steps taken to execute depends on
a relationship between its parameters a and b. Our static analysis
technique, however, still manages to compute an approximation —
a logarithmic function with base 2, which is dependent on only one
of the arguments. Part of the reason why we can analyze programs
of this type is that symbolic evaluation of modulus between two
variables « mod y is defined as an upper bound of y — 1, a lower
bound of 0 and an approximation of (y — 1)/2.

The levenshtein cost function for the XxCORE processor in-
cludes a max function, making it a different type of formula from
the Cortex-M’s cost function. This occurs when a data dependent
branch is on the upper bound of the function and the analysis is un-
able to resolve the branch statically, possibly because the branching
is data dependent. An example of this is shown in Figure 5. The
analysis cannot statically ascertain the outcome of the A < B ex-
pression, so it simply returns the cost function as the maximum of
the two possible branches:

function =k + max(k2 +2-ks3- A, ks + ks - B) —+ k,‘ﬁ,

where k1, ..., k¢ are the costs of executing the respective basic
blocks, as seen in Figure 5.2. The same effect causes max to ap-
pear in the XCORE’s formula since there is a data dependent if
statement in an inner loop of levenshtein.

5.3 Composability

All of the benchmarks so far have consisted of relatively simple
code, for which a single function is analyzed. However, the analysis
can handle nesting and recursion, in the same way that it can handle
functions with multiple basic blocks. In the code in Listing 2,
the levenshtein and modified insertion sort functions are
composed into a simple spell checker — for a given string, sort the
list of strings by the sortbysimilarity to the target string.

In this listing, dictword_len is the maximum size of the strings
in dictionary. Inferring a cost formula for this program does not
present any issues as long as it is possible to infer formulas for its



RIGHTS

SCOPES 2015

constituent parts. Our techniques construct Cost Relations (CRs)
from the program that is being analyzed. An important feature of
CRs is their compositionality. Compositionality allows to compute
closed form solutions of CRs, composed of multiple relations,
by concentrating on one relation at a time. The process starts by
solving cost relations that do not depend on any other relations
and proceeds by replacing the these cost relations in the equations
which call such relations. For instance, for the above program
levenshtein distance has an associated energy cost of

(A(53B + 16) + 358 + 31) nJ, (6)

where A and B are the third and fourth arguments to the function.
Our modified string sorting routine has a cost of:

(37A% + 144 + 14) nJ. @)

These functions are systematically combined together so that a cost
for sortbysimilary is computed. In this case it is

(530ABC + 15TAC + 346 BC + 366C° + 629C + 210) nJ,
(®)

where A is word_len, B is dictword_len and C'is n_strings.

6. Related Work

Related work exists in four different areas: energy modeling of
processors, mapping low-level program segments to higher level
structures, static resource consumption usage analysis and worst-
case execution time analysis (WCET).

Energy models of processors for program analysis require en-
ergy consumption data in relation to the program’s instructions.
This data can be collected by simulating the hardware at various
levels, including semiconductor [17] and CMOS [5]. Alternatively,
higher level representations may be used, such as functional block
level [26] that reflects the micro-architecture, direct measurement
on a per-instruction basis [28], or profiling the energy consumption
of commonly used software blocks [24]. Higher level data collec-
tion and modeling efforts are typically quicker to use once the data
has been acquired, as there is less computational burden than a low-
level simulation. However, the accuracy may be lower, so a suitable
trade-off must be met.

Although substantial effort has been devoted to ISA energy
modeling, there is not a lot of work done for higher level program
representations. This is mostly because precision decreases when
moving further away from the hardware. One of the most recently
pertinent works for LLVM IR energy modeling is [6]. The au-
thors performed statistical analysis and characterization of LLVM
IR code, together with instrumentation and execution on the host
machine, to estimate the performance and energy requirements in
embedded software. In their case, retrieving the LLVM IR energy
model to a new platform requires performing the statistical anal-
ysis again. Our LLVM IR energy model takes into consideration
types and other aspects of the instructions. Furthermore, our map-
ping technique requires only the adjustment of the LLVM mapping
pass for the new architecture.

Static cost analysis techniques based on setting up and solving
recurrence equations date back to Wegbreit’s [32] seminal paper,
and have been developed significantly in subsequent work [3, 7,
20, 25, 30]. In [18] this approach is applied to the static inference
of Java programs’ resource consumption as functions of input data
sizes, by specializing a generic resource analyzer [10, 20] to Java
bytecode analysis [19]. However, this work did not compare the
results with measured energy consumptions. In [15] the approach
is applied to the energy analysis of XC programs using ISA-level
models [13], and the results are compared to actual hardware mea-
surements. Our analysis continues in this line of work but with a
number of important differences. First, analysis is performed at
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the LLVM-IR level and we propose novel techniques for reflect-
ing the ISA-level energy models at the LLVM-IR level. Instead of
using a generic resource analyzer (requiring translating blocks to
its Horn Clause-based input syntax) and delegating the generation
of cost equations to it, we generate the equations directly from the
LLVM-IR compiler representation, performing control flow sim-
plifications, and reducing the number of variables modelled by the
analysis mechanism. Finally, we study a larger set of benchmarks.
Other approaches to cost analysis exist, such as those using depen-
dent types [11], SMT solvers [4], or size change abstraction [36].
As discussed in Section 1, energy and time are often correlated
to some degree. Techniques such as implicit path enumeration [14]
are often used in worst-case execution time analysis of programs. In
most cases, programs are assumed to be preprocessed such that no
loops are present (e.g. using loop unrolling). Some approaches such
as [12] focus on statically predicting cache behavior. WCET analy-
sis is concerned with getting an absolute worst-case timing for hard
real-time systems. In practice, for energy consumption analysis we
typically are more interested in average cases. Also, most WCET
analysis approaches produce absolute timing figures. In our case,
we infer energy formulae parameterized by the program’s input.

7. Conclusion and Future Work

In this paper we have introduced an approach for estimating the
energy consumption of programs based on the LLVM compiler
framework. We have shown that this approach can be applied to
multiple embedded languages (such as C or XC), compiled using
optimization level 02 with different compilers (such as Clang or
XCC). We have also validated this approach for multiple backends,
via two target architectures: ARM Cortex M3 and XMOS XS1-
L. Our approach is validated by comparing the static analysis to
physical measurement taken from the hardware. The results on our
benchmarks show that energy estimations using our technique are
within 10% and 20% or better in the case of the XCORE and the
Cortex-M processors, respectively.

Although the techniques discussed here were initially designed
for single threaded programs, these can be adapted to multi-
threaded programs. To do so, we need to take the synchronization
time into consideration. For example, the XC language has explicit
constructs for thread communication using channels, and therefore
the blocking communication between threads needs to be modeled.
In order to do so, we can analyze the communication throughput of
individual threads using techniques discussed in this paper. Using
this information we can estimate the time between events happen-
ing on channels and hence the utilization of the processor. This,
coupled with multi-threaded energy models as discussed in Sec-
tion 4.1, can be used to analyze multi-threaded programs.

An interesting direction is to further develop the assignment of
energy to LLVM IR program segments. In particular, an LLVM IR
energy model for the XCORE can be implemented by using the in-
formation gathered from the mapping technique together with sta-
tistical analysis. The mapping technique used for the XCORE can
also be adapted for the ARM case. We aim to further develop our
techniques so they can be applied against other embedded proces-
sor architectures, such as MIPS, or other ARM variants. In partic-
ular, it would be interesting to see how far this technique can be
effective with architectures that feature multiple pipelines, regis-
ter renaming and similar optimizations. Further work could involve
energy models applied to short strings of instructions, augmented
with appropriate heuristics.

Finally, the static analysis techniques can be improved further.
Currently the biggest limitation is solving the cost relations. Cost
relations could also be solved numerically, enabling us to analyze
more complex programs. An implementation of this can be used
when actual formulae are not required.
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