
OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 87

MadMax: Analyzing
the Out-of-Gas World
of Smart Contracts
By Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis

DOI:10.1145/3416262

Abstract
Ethereum is a distributed blockchain platform, serving as
an ecosystem for smart contracts: full-fledged intercom-
municating programs that capture the transaction logic of
an account. A gas limit caps the execution of an Ethereum
smart contract: instructions, when executed, consume gas,
and the execution proceeds as long as gas is available.

Gas-focused vulnerabilities permit an attacker to force
key contract functionality to run out of gas—effectively
performing a permanent denial-of-service attack on the
contract. Such vulnerabilities are among the hardest for
programmers to protect against, as out-of-gas behavior may
be uncommon in nonattack scenarios and reasoning about
these vulnerabilities is nontrivial.

In this paper, we identify gas-focused vulnerabilities
and present MadMax: a static program analysis technique
that automatically detects gas-focused vulnerabilities with
very high confidence. MadMax combines a smart con-
tract decompiler and semantic queries in Datalog. Our
approach captures high-level program modeling concepts
(such as “dynamic data structure storage” and “safely
resumable loops”) and delivers high precision and scal-
ability. MadMax analyzes the entirety of smart contracts in
the Ethereum blockchain in just 10 hours and flags vulner-
abilities in contracts with a monetary value in billions of
dollars. Manual inspection of a sample of flagged contracts
shows that 81% of the sampled warnings do indeed lead to
vulnerabilities.

1. INTRODUCTION
Ethereum is a decentralized blockchain platform that can
execute arbitrarily-expressive computational smart contracts.
A smart contract can capture virtually any complex inter-
action, such as responding to communication from other
accounts and dispensing or accepting funds. The possibili-
ties for such programmable logic are endless. It may encode
a payoff schedule, investment assumptions, interest policy,
conditional trading directives, trade or payment agreements,
and complex pricing. Virtually any transactional multiparty
interaction is expressible without a need for intermediaries
or third-party trust.

Smart contracts typically handle transactions in Ether,
which is the native cryptocurrency of the Ethereum block-
chain with a current market capitalization in tens of billions
of dollars. Smart contracts (as opposed to noncomputa-
tional “wallets”) hold a considerable portion of the total
Ether available in circulation, which makes them ripe targets

The original version of this paper appeared in Proceedings of the ACM
Programming Languages 2 (OOPSLA) (Nov. 2018).

for attackers. Hence, developers and auditors have a strong
incentive to make extensive use of various tools and pro-
gramming techniques that minimize the risk of their con-
tract being attacked.

Analysis and verification of smart contracts are, therefore,
high-value tasks, possibly more so than in any other applica-
tion domain. The combination of monetary value and pub-
lic availability makes the early detection of vulnerabilities a
task of paramount importance.

A broad family of contract vulnerabilities concerns out-of-
gas behavior. Gas is the fuel of computation in Ethereum. Due
to the massively replicated execution platform, wasting the
resources of others is prevented by charging users for running
a contract. Each executed instruction costs gas, which is traded
with the Ether cryptocurrency. As a user pays gas upfront, a
transaction’s computation may exceed its allotted amount of
gas. In that case, the Ethereum Virtual Machine (EVM), which is
the runtime environment for compiled smart contracts, raises
an out-of-gas exception and aborts the transaction. A contract
is at risk for a gas-focused vulnerability if it has not anticipated
(or otherwise does not correctly handle) the possible abortion of a
transaction due to out-of-gas conditions. A vulnerable smart con-
tract may be blocked forever due to the incorrect handling of
out-of-gas conditions: re-executing the contract’s function will
fail to make progress, re-yielding out-of-gas exceptions, indefi-
nitely. Thus, although an attacker cannot directly appropriate
funds, they can cause damage to the contract, locking its bal-
ance away in what is, effectively, a denial-of-service attack.
Such attacks may benefit an attacker in indirect ways—for
example, harming competitors or the ecosystem, amassing
fame in a black-hat community, or blackmailing.

In this work, we present MadMax:1 a static program anal-
ysis framework for detecting gas-focused vulnerabilities in
smart contracts. MadMax is a static analysis pipeline con-
sisting of a decompiler (from low-level EVM bytecode to a
structured intermediate language) and a logic-based analy-
sis specification. MadMax is highly efficient and effective:
it analyzes the whole Ethereum blockchain in just 10 hours
and reports numerous vulnerable contracts holding a total
value exceeding $2.8B, with high precision, as determined
from a random sample.

1 Available at: https://github.com/nevillegrech/MadMax.

http://dx.doi.org/10.1145/3416262

research highlights

88 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

MadMax is unique in the landscape of smart contract ana-
lyzers and verifiers. It is an approach employing cutting-edge
declarative static analysis techniques (e.g., context-sensitive
flow analysis and memory layout modeling for data struc-
tures), whereas past analyzers have primarily focused on
lightweight static analysis, on symbolic execution, or on full-
fledged verification for functional correctness. As MadMax
demonstrates, static program analysis offers a unique com-
bination of advantages: very high scalability (applying to the
entire blockchain) and high coverage of potential vulnerabil-
ities. Additionally, MadMax is raising the level of abstraction
of automated security analysis, by encoding complex prop-
erties (such as “safely resumable loop” or “storage whose
increase is caused by public calls”), which, in turn, allow
detecting vulnerabilities that span multiple transactions.

2. BACKGROUND
A blockchain is a shared, transparent distributed ledger
of transactions that is secured using cryptography. One
can think of a blockchain as a long and ever-growing list
of blocks, each encoding a sequence of individual transac-
tions, always available for inspection and safe from tam-
pering. Each block contains a cryptographic signature of
its previous block. Thus, no previous block can be changed
or rejected without also rejecting all its successors. Peers/
miners run a mining client for separately maintaining the
current version of the blockchain. Each of the peers con-
siders the longest valid chain starting from a genesis block
to be the accepted version of the blockchain. To encour-
age transaction validation by all peers and discourage
wasted or misleading work, a blockchain protocol typi-
cally combines two factors: an incentive that is given as a
reward to peers successfully performing validation, and a
proof-of-work, requiring costly computation to produce a
block. To see how distributed consensus and permanent
record-keeping arise, consider a malicious client who tries
to double-spend a certain amount. The client may propa-
gate conflicting transactions (e.g., paying sellers A and B)
to different parts of the network. As different peers become
aware of the two versions of the truth, a majority will arise,
because the peers will build further blocks over the version
they perceived as current. Thus, a majority will soon accept
one of the two spending transactions as authoritative and
will reject the other. The minority has to follow suit, or its
further participation in growing the blockchain will also be
invalidated: the rest of the peers will disregard any of the
blocks not resulting in the longest chain.

Using this approach, a blockchain can serve to coordi-
nate all multiparty interactions with trust arising from the
majority of peers, instead of being given to an authority by
default.

The original blockchain, at least in its popular form, is
due to the Bitcoin platform.11 Bitcoin is explicitly a special-
purpose cryptocurrency platform. Therefore, the data regis-
tered on the Bitcoin ledger can be seen as transaction parties
and amounts (with minor logic permitted for cryptographic
authentication). In contrast, the blockchain formulation we
are interested in is the one popularized by the Ethereum plat-
form4, 21: registered accounts may contain smart contracts,

that is, full-fledged programs that can perform arbitrary com-
putations, enabling the encoding of complex logic.

Ethereum smart contract programming is most com-
monly done in the Solidity language.18 Solidity is a JavaScript-
like language, enhanced with static types, contracts as a
class-like encapsulation construct, contract inheritance, and
numerous other features.

The Solidity (or other high-level language) level of abstrac-
tion is significantly removed from that of the code that directly
runs on the Ethereum blockchain. Instead, Ethereum natively
supports a low-level bytecode language—the Ethereum plat-
form is essentially a distributed, replicated virtual machine,
called the Ethereum VM (EVM). The EVM is a low-level stack-
machine with an instruction set such as standard arithmetic
instructions, basic cryptography primitives (mainly crypto-
graphic hashing), primitives for identifying contracts and
calling out to different contracts (based on cryptographic
signatures), exception-related instructions, and primitives
for gas computation. Data is stored either on the blockchain
(a memory area called storage), in the form of persistent data
structures, or in contract-local transient memory.

In our work, we focus on analyzing smart contracts at the
bytecode level. This is a high-cost design decision (due to the
low-level nature of the bytecode). At the same time, the EVM
bytecode level of abstraction yields a high payoff for analy-
ses that target it. A bytecode-level analysis does not require
a contract’s source, allowing the analysis of both new and
deployed contracts, originally written in any language. At the
bytecode level, the input code is normalized, with all control
flow being explicit, uniform, and simplified. Furthermore,
the impedance mismatch between a high-level language
and the EVM bytecode is often a source of confusion and
error. For instance, consider the code pattern here:

creditorAddresses = new address [](size);

This code RESULTS in iteration over all locations of an
array, to set them to zero. This iteration can well run out of gas.
(Such code was behind a vulnerability1 in the GovernMental16
smart contract, for example.) The iteration is implicit at the
Solidity level but immediately apparent at the bytecode level.

3. GAS-FOCUSED VULNERABILITIES
We next identify some of the most common patterns of gas-
focused vulnerabilities. We employ Solidity for illustration
purposes, even though our entire analysis work is at the EVM
bytecode level.

The Ethereum execution model incentivizes users to
minimize the number of instructions executed, by making
them pay up front for the gas required to execute a transac-
tion. Running out of gas is common, but, in most cases, this
is not catastrophic: the transaction is reverted and the end
user reruns it with a higher gas budget.

However, Ethereum smart contracts can relatively easily
reach a state such that there will never be enough gas to run
their code. The most common reason is the block gas limit of
the Ethereum network—currently at 9M units of gas, which is
enough for a mere few hundred writes to storage (i.e., to the
blockchain).

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 89

3.1. Unbounded mass operations
The most standard form of a gas-focused vulnerability is
that of unbounded mass operations. Loops whose behavior
is determined by user input could iterate too many times,
exceeding the block gas limit, or becoming too economi-
cally expensive to perform. The code may not have predicted
this possibility, thus failing to ensure that the contract can
continue to operate as desired under these conditions. This
will commonly lead to a denial of service for all transactions
that must attempt to iterate the loop. Consider the contract:

contract NaiveBank {
 struct Account {
 address addr;
 uint balance;
 }
 Account accounts [];

 function applyInterest () returns (uint) {
 for (uint i=0; i < accounts . length; i++) {
 // apply 5 percent interest
 accounts [i] . balance =
 accounts [i] . balance * 105 / 100;
 }
 return accounts. length;
 }
}

As the number of accounts is increased, the gas require-
ments for executing applyInterest will rise. Very quickly
(after a mere few hundred entries are added to accounts),
the function will be impossible to execute without raising
an out-of-gas exception: the cost of the loop’s instructions
exceeds the Ethereum block gas limit.

Ethereum programming safety recommendations17 sug-
gest that programs should avoid having to perform opera-
tions for an unbounded number of clients (instead merely
enabling the clients to “pull” from the contract). However, it
is easy for contracts to violate this practice, without realizing
that a loop’s iterations are bounded only by user-controlled
quantities.

An alternative recommendation is that when loops do need
to perform operations for an unbounded number of clients,
the amount of gas should be checked at every iteration and the
contract should “keep track of how far [it has] gone, and be able
to resume from that point”.17 This pattern is complex, error-
prone, and (as we determine) very uncommon in practice.

3.2. Nonisolated calls (wallet griefing)
An additional way for a contract to run into out-of-gas trou-
ble involves invoking external functionality that may itself
throw an out-of-gas exception. The first element of the prob-
lem is a call that the programmer may not have considered
extensively. Such calls are typically implicit, as part of Ether
transfer. Sending Ether involves calling a fallback function
on the recipient’s side.

It is illustrative to see the issue based on the Solidity primi-
tives and recommended practices. In Solidity, sending Ether
is performed via either the send or the transfer primitive.

These have different ways to handle transfer errors. For
instance, send returns false if sending Ether fails:

< address >. send (uint256) returns (bool)

On the other hand, transfer raises an error (i.e., throws
an exception) if sending Ether fails.

Importantly, both the send and the transfer Solidity
primitives are designed with failure in mind. Both are
translated into regular calls at the EVM bytecode level, but
with a limited gas budget of 2300 given to the callee. This
is barely enough to allow executing some logging code on
the recipient’s side. Therefore, the emphasis is placed on
the error handling.

A good practice locally (and also used in recommended
Ethereum security code patterns17) is using the send primi-
tive always with a check of the result and aborting the
transaction by throwing an exception, if a send fails. This
effectively turns a send into a transfer plus any other
code the user wants.

The problem arises when that exception is thrown in
the middle of a loop, which is also handling other external
accounts. The contract programmer or auditor may easily
miss the potential threat. For instance, the loop may iter-
ate only a bounded number of times (e.g., a contest may
award money to the three leaders of a scoreboard) tricking
the programmer into thinking that its gas consumption is
fixed. Furthermore, it is counter-intuitive to consider that an
external party will purposely abort the very transaction that
gives it money. Finally, the usually-conservative naïve error
handling of eagerly aborting the transaction conspires to
cause the problem.

We can see the issue in example code for a vulnerability20
appealingly termed wallet griefing.2 Consider a simple loop
that tries to reward the three winners of a contest:

for (uint i = 0; i < 3; i++)
 if (!(winners [i]. send (reward))) throw;

The problem is that the send command will also result
in the callback function of the winner being executed. All
it takes for the contract to be vulnerable is for attackers
to make themselves a winner and then provide a callback
function that runs out of gas. The sender contract may
never be able to recover from such conditions—for exam-
ple, code clearing the winners may only appear after the
end of the above loop.

3.3. Integer overflows
A programming error that commonly expresses itself as a
gas-focused vulnerability results from possible integer over-
flows, often (but not exclusively) arising due to the Solidity-
type inference approach. This is a separate pattern from the
general attack of Section 3.1, as the iteration is not merely
unbounded but literally nonterminating.

2 The slang term “griefing” comes from the gaming community, where it is
used to denote targeted destructive behavior meant to harass.

research highlights

90 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

 destinations, per the above point). All functions of a
contract are fused in one, with low-level jumps as the
means to transfer control.

To call an intracontract function, the code pushes a
return address to the stack, pushes arguments, pushes the
destination block’s identifier (a hash), and performs a jump
(which pops the top stack element, to use it as a jump des-
tination). To return, the code pops the caller basic block’s
identifier from the stack and jumps to it.

4.2. Decompilation approach
MadMax was originally based on the Vandal decompiler.3, 19
Subsequently, the same analysis logic has been ported to our
Gigahorse decompiler framework.6

Our decompilation step accepts EVM bytecode as input
and produces output in a standard structured intermediate
representation: a control-flow graph (of basic blocks and the
edges connecting them); three-address code for all opera-
tions (instead of operations acting on the stack); and recog-
nized (likely) function boundaries. This representation is
encoded as relations (i.e., tables) and queried, recursively, to
formulate higher-level program analyses.

We observe that the EVM bytecode input is much like a
functional language in continuation-passing-style (CPS)
form: all calls and returns are forward calls (jumps), where
calls add the continuation (return-to instruction) as one of
the arguments. This equivalence of CPS and low-level jumps
has been observed before—most explicitly by Thielecke.15

The technical setting of having CPS input and needing to
detect value and control flow is precisely that of control-flow
analysis (CFA).12, 13 Control-flow analysis is also one of the
original proposals for a context-sensitive (call-site sensitive)
static analysis of value flow: for a k-CFA analysis, every call
target gets analyzed separately for each caller (i.e., calling
instruction), caller’s caller, etc., up to a maximum depth, k.

Decompilation, therefore, adopts the standard form of
a control-flow analysis,13 formulated as an abstract-interpreta-
tion. Context sensitivity adapts to the complexity of the input
contract, often resulting in analyses with deep context
(e.g., k = 12). The end result is a three-address code using
the schema listed in Figure 1. Syntax sugar and minor detail
elision are employed for presentation purposes. Language
syntax is quoted using [and] and implicitly unquoted for
meta-variables. For instance, s:[to:= BinOp(x, y)] indicates
that statement s is some binary operation on x and y with its
result in to, where x, y, and to are the meta-variables refer-
ring to the bytecode variables. The distinction between vari-
ables in the analyzed program and meta-variables in the
analysis is clear from context; therefore, we simply refer to
“variables,” henceforth. We omit the statement identifier, s,
when it does not affect a rule. We also use * as a wildcard,
that is, it denotes any variable, which is ignored.

The schema captures all elements of EVM bytecode in
a slightly abstracted fashion, using a standard, structured
intermediate language. For example, JUMPI instructions
have statements, and not arbitrary values, as targets. All
binary operations are treated equivalently, as we currently
do not attempt to analyze arithmetic expressions. We do not

Consider the following contract:

contract Overflow {
Payee payees [];

function goOverAll () {
 for (var i = 0; i < payees . length; i++)
 { ... }
 } ...
 }

The use of var induces a type inference problem. (Newer
versions of Solidity statically detect this issue.) The inferred
type of variable i is uint8 (i.e., a byte), as the variable is
initialized to 0 and uint8 is the most precise type that can
hold 0 while being compatible with all operations on i.
Unfortunately, this means that a mere addition of 256 mem-
bers to payees is enough to cause the loop to not terminate,
quickly resulting in gas exhaustion. An attacker can exploit
this vulnerability by adding fake payees using appropriate
public functions (not shown) until the overflow is triggered.

4. DECOMPILING EVM BYTECODE
The first step of our gas-focused vulnerability analysis is a
decompilation step, raising the level of abstraction from that
of EVM bytecode to a structured intermediate language (IR):
control-flow graphs (CFGs) over the three-address code. The
decompilation step is itself a static analysis, as EVM bytecode
is low-level: much closer to machine-specific assembly than
to structured IRs (e.g., Java bytecode or.NET IL).

4.1. Challenges for EVM bytecode analysis
The EVM is a stack-based low-level IR with minimal struc-
tured language characteristics. In the bytecode form of a
smart contract, symbolic information has been replaced by
numeric constants, functions have been fused together, and
control flow is hard to reconstruct. To illustrate, compare
the EVM bytecode language to the best-known bytecode
language: Java (JVM) bytecode—a much higher-level IR. The
design differences include the following:

• Unlike JVM bytecode, EVM does not have structs, classes,
or objects, nor does it have a concept of methods.

• Java bytecode is a typed bytecode, whereas EVM bytecode
is not.

• In JVM bytecode, the stack depth is fixed under different
control flow paths: execution cannot get to the same
program point with different stack sizes. In EVM byte-
code, no such guarantee exists.

• All control-flow edges (i.e., jumps) in EVM bytecode are
to variables, not constants. The destination of a jump is
a value that is read from the stack. Therefore, a value-
flow analysis is necessary even to determine the con-
nectivity of basic blocks. In contrast, JVM bytecode has
a clearly-defined set of targets of every jump, indepen-
dent of value flow (i.e., independent of stack contents).

• JVM bytecode has defined method invocation and return
instructions. In EVM bytecode, although calls to outside
a smart contract are identifiable, function calls inside
a contract get translated to just jumps (to variable

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 91

5. CORE MADMAX ANALYSIS
The main MadMax analysis operates on the output of decom-
pilation using logic-based specifications. The analysis is
implemented in the Datalog language: a logic-based language,
equivalent to first-order logic with recursion.8 The analysis
consists of several layers that progressively infer higher-
level concepts about the analyzed smart contract. Starting
from the three-address-code representation of Figure 1, con-
cepts such as loops, induction variables, and data flow are
first recognized. Then, an analysis of memory and dynamic
data structures is performed, inferring concepts such as
dynamic data structures, contracts whose storage increases
upon reentry, nested arrays, etc. Finally, concepts at the
level of analysis for gas-focused vulnerabilities (e.g., loop with
unbounded mass storage) are inferred.

5.1. Flow and loop analyses
Ethereum gas-focused vulnerabilities tend to require a high-
level semantic understanding of the underlying contract.
There are various initial low-level analyses that need to hap-
pen before expressing deeper semantics. Thus, the first
step of a MadMax analysis is the derivation of loop and data
flow information. This yields several relations, on which
further analysis steps are built. The relations, together with
some extra domain and input context definitions, are given
in Figure 2. We do not provide the Datalog rules for any of
these relations—their implementation, although not always
straightforward, is standard. For instance, it resembles the
flow computation in standard Datalog analysis formula-
tions14 or frameworks for Java bytecode, such as JChord9, 10
and Doop.2

The first three computed relations in Figure 2 (InLoop,
InductionVar, and LoopExitCond) encode useful con-
cepts in structured loops. Note that loops in low-level pro-
grams do not have to be structured; for example, there may
not be a loop head that dominates all loop statements.
However, Solidity and other EVM languages often produce
structured loops as part of their compilation process. The
loop analysis finds induction variables, that is, variables that
are incremented by a predictable (but not necessarily stati-
cally known) amount in each iteration.

The next four relations capture a data-flow analysis. Relation
Flows expresses a data-flow dependency between variables.
In its simplest form, Flows is just the reflexive transitive clo-
sure of the BinOp input relation; that is, it ignores storage and

include unary operations or direct assignment between vari-
ables in Figure 1, although we do so in the implementation,
because these can be treated as special cases of binary oper-
ations. Rtvalue gives a uniform treatment of instructions
that return the cost of gas, transaction id, code size, caller,
and other run-time quantities.

Figure 1. Domains and decompiler output (i.e., input relations for
main analysis).

V is a set of program variables
C is a set of constants, C ⊆
S is a set of statement identifiers
N is the set of natural numbers, Z is the set of integers

s:[to := CONST(c)] s : S, to : V, c : C

load from storage
s:[to := SLOAD (index)] s : S, index : V, to : V

store to storage
s:[SSTORE(from, index)] s : S, index : V, from : V

load from (volatile) memory
s:[to := MLOAD(index)] s : S, index : V, to : V

store to (volatile) memory
s:[MSTORE(from, index)] s : S, index : V, from : V

conditional jump
s:[JUMPI(cond, label)] s : S, cond : V, label : S

conditional throw
s:[THROWI(cond)] s : S, cond : V

keccak 256 hash
s:[to := SHA3(ind, len)] s : S, ind : V, len : V, to : V

call external contract
s:[to := CALL(addr, gas...)] s : S, addr : V, gas : V, to : V

get remaining gas
s:[to := GAS()] to : V

get run-time value (e.g. current block size)
s:[to := RTVALUE()] to : V

CAST integer to a number of bits
s:[to := CASTN(from)] to : V, from : V, n : N

binary operator e.g. φ, ADD, AND, etc.
s:[to := BINOP(a, b)] y s : S, a : V, b : V, to : V

constant assignment

Figure 2. Extra domains, input, and output schema for baseline loop and data flow analyses.

INLOOP(s : S, l : L) Statement s is part of loop l
Statement s is part of function f

INDUCTIONVAR(v : V, l : L) v is an induction variable of loop l
LOOPEXITCOND(condVar : V, l : L) Loop condition of l is captured by condVar
HASCONSTANTVALUE(v : V, c : C) Constant c may propagate to variable v
FLOWS(from : V, to : V) Data flow analysis: the value of from flows to to
VARALIAS(v : V, u : V) Local alias analysis: v,u may be aliased via direct assignment
MEMCONTENTS(s : S, p : V, v : V) At statement s, contents at memory location p may be v

F is a set of function hashes
L is a set of structured loops

INPUBLICFUNCTION(s : S, f : F)

research highlights

92 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

However, the existence of all three conditions is a very strong
indication that the programmer has considered the possi-
bility of an out-of-gas exception and has taken precautions
to make the loop resumable on a re-execution of the con-
tract function.

5.2. Analysis of memory layout
A faithful modeling of the Ethereum VM memory layout for
dynamic data structures is a key part of MadMax. This mod-
eling is necessary for reducing the false-positive rate of the
analysis. An intuitive but naïve approach to find gas vulner-
abilities may be to flag any contract that contains loops that
are “dynamically bound,” or loops where the number of iter-
ations depends on some value stored in storage or passed
as external input. However, a precise analysis requires more
sophistication. We find experimentally that around half of
the currently deployed contracts have dynamically bound
loops—but it would be entirely unrealistic to expect that
half of smart contracts currently deployed are vulnerable.
Instead, for loops that iterate over unbounded data (i.e.,
data structures), we need to determine whether the data
structure could have been populated by an attacker.

The Ethereum virtual machine does not have notions of
high-level data structures. Instead, operations on high-level
data structures are compiled down to low-level operations on
addressable storage. Solidity offers two main kinds of dynam-
ically-sized data structures: dynamically-sized arrays and asso-
ciative arrays, that is, maps. Although both arrays and maps
can be dynamically resized, no mechanism exists for iterating
over maps. Therefore, arrays are the primary data structure to
model, in order to capture loops that iterate without bounds.

The Ethereum memory layout is highly unconventional
from a traditional programming language standpoint,
although perfectly reasonable if one considers the specif-
ics of the execution environment (i.e., a segregated, 256-bit

memory load and store instructions. However, one can give
more sophisticated Flows definitions without affecting the
rest of the analysis. VarAlias is a similar relation but more
restrictive, for variables directly assigned to each other with no
further arithmetic. Accordingly, HasConstantValue does
a simple constant propagation: it is just the composition of
VarAlias with the input CONST relation.

Finally, MemContents does a simple analysis of Mstore
operations given the results of VarAlias and propagates the
results to every statement reachable from an Mstore in the
control-flow graph.

There are two points worth mentioning about the above
relations:

• The data-flow analysis (i.e., relations HasConstant-
Value, Flows, VarAlias, and MemContents) is
best-effort, that is, neither sound nor complete. This
means that, first, not all possible flows, aliases, etc.
are guaranteed to be found: two variables may hold
the same value as a result of complex arithmetic, run-
time operations, memory load and stores, etc., with-
out the analysis computing this. Second, not all
inferences are guaranteed to hold. For example, an
inference that is known to hold in one control-flow
path but not in another will be optimistically propa-
gated when paths are merged.

The property of being neither sound nor complete
carries over to our overall analysis results. MadMax nei-
ther guarantees to detect all gas vulnerabilities nor guar-
antees that every gas vulnerability reported is a real bug.
This design choice is well-aligned with the intended pur-
pose of a bug-detecting static analysis—the value of the
analysis is not based on its guarantees but on its real-
world usefulness.5

• Relations Flows and VarAlias are pervasive in the
MadMax analysis. Most other relations we shall see
henceforth are transitively closed with respect to either
Flows or (the weaker) VarAlias. We elide such transi-
tive-closure Datalog rules from our exposition and only
focus on the seed logic of each interesting concept.

Armed with the above basic loop and data-flow analy-
ses, we can establish higher-level concepts, such as a loop’s
bound. This is defined as LoopBoundBy in Figure 3. If
both an induction variable i and a noninduction variable c
flow to a loop exit condition, then we infer that the loop may
be bound by the contents of c. A further refinement of this
relation is DynamicallyBound, which infers which loops
are bound by either storage or some other value that is only
known at run-time.

Finally, we define predicate PossiblyResumableLoop,
to match loops that appear to implement the Ethereum
secure coding recommendations,17 by checking the amount
of remaining gas, saving to (permanent) storage an induc-
tion variable, and loading the same induction variable from
storage. Note that this is not an entirely precise detection of
resumable loops—it may well be finding instances of code
that just happen to match these abstract conditions, for
example, gas check, store, and load of induction variable.

Figure 3. Inferring bound loops and resumable loops.

LOOPBOUNDBY(loop, var) ←
INDUCTIONVAR(i, loop),
!INDUCTIONVAR(var, loop),
FLOWS(var, condVar),
FLOWS(i, condVar),
LOOPEXITCOND(condVar, loop).

DYNAMICALLYBOUND(loop) ←
[dynVar := SLOAD(*)],
LOOPBOUNDBY(loop, dynVar).

DYNAMICALLYBOUND(loop) ←
[dynVar := RTVALUE()],
LOOPBOUNDBY(loop, dynVar).

POSSIBLYRESUMABLELOOP(loop) ←
[gas := GAS()],
LOOPBOUNDBY(loop, gas).
INDUCTIONVAR(i, loop),
FLOWS(loaded, i),
[loaded := SLOAD(*)],
FLOWS(i, stored),
[SSTORE(*, stored)],

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 93

affects the address loaded.
Finally, loop overflows are conservatively asserted to be

likely if the induction variable is cast to a short integer or
ideally one byte. The loop has to be “dynamically bound”
to be vulnerable, that is, the number of iterations is deter-
mined by some run-time value.

6. IMPACT
Our original MadMax experiments consider all smart con-
tracts available on the Ethereum blockchain on April 9,
2018. We ran MadMax on an idle machine with an Intel Xeon
E5–2687W v4 3.00 GHz and 512 GB of RAM. Due to time con-
straints, we set a cutoff of 20 s for decompilation—beyond
that time, contracts are considered to time-out.

The contracts flagged for vulnerabilities, combined, con-
tain 7.07 million ETH, or roughly $2.8 billion.3 In total, there
were 6.33 million contract instances deployed at the time of
our blockchain scraping, produced from 91.8k unique pro-
grams. 4.1% of the contracts are flagged by MadMax as being
susceptible to unbounded iteration, 0.12% to wallet griefing,
and 1.2% to overflows of loop induction variables.

To estimate a false-positive rate, we manually inspected a
subset of the contracts flagged. Our unbiased sampling pro-
cess involves taking unique bytecode programs and selecting
the first and last few contracts by block-hash order. However,
a bias factor is introduced by the need to have source code
available online—contracts without source code were not
considered, as manual inspection of low-level bytecode is
highly time-consuming and unreliable.

We select the first 13 contracts, and manual inspection
reveals that 11 of these contracts indeed exhibit 13 distinct
vulnerabilities, of 16 flagged, for a precision of 13/16 = 81%.
The exact number is hardly important—a larger sample
could have it move a few percentage points up or down.
What is important is that the analysis is precise enough to
yield a wealth of true vulnerability warnings. By manually
inspecting the sampled contracts, we have gained impor-
tant insights about the effectiveness of MadMax—presented
in detail in the MadMax conference publication.7

The entire MadMax analysis of the 91.8k contracts took less
than 10 hours, running 45 concurrent processes. Subsequent
advances of the Gigahorse decompiler have brought this num-
ber down by at least a factor of 2. Decompilation currently
exhibits time-outs for around 4% of the contracts, depending
on the exact settings.

Note that a confirmed vulnerability in a contract does not
mean that: (1) exploiting the vulnerabilities is easy or cheap
or (2) the vulnerability blocks all Ether in a contract. For
instance, the gas required to exploit an unbounded mass

memory space per contract, cryptographic hashing as a
primitive). The main idea is that a key represents an array.
The key is the address of the memory location holding the
array’s size. At the same time, the key is hashed to yield the
address of the memory location that holds the array’s
contents.

Figure 4 depicts an example of storage allocation for a
simple contract with two scalar variables and a two-dimen-
sional dynamic array. Fixed-sized data structures in Solidity
are stored consecutively in storage as these appear in pro-
gram order, starting from offset 0. The individual elements in
arrays are also stored consecutively in storage; however, the
starting offset of the elements requires some calculations to
be determined. Due to their unpredictable size, dynamically-
sized array types use a keccak256 hash function (sha3) to
find the starting position of the array data. The dynamic
array value itself occupies an empty slot in storage at some
position p. For a dynamic array, this slot stores the number
of elements in the array. The array data, however, is located
at keccak256(p). The implementation of arrays is extended
to arbitrarily-nested dynamic data structures, by recursively
mapping the above implementation, necessitating a recur-
sive analysis.

MadMax performs an analysis (elided) for modeling the
memory layout and identifying dynamic data structures in
smart contracts. The outputs of this analysis are shown in
Figure 5. Based on these relations, we define key concepts for
gas-focused analyses, as shown in Figure 6. An important con-
cept is IncreasedStorageOnPublicFunction. Storage
variables that are increased and stored in their corresponding
storage slot imply that a contract’s array size is increased when
some public function is invoked. Moreover, we can find loops
that iterate over arrays. We define ArrayIterator as a loop
that iterates over an array.

5.3. Top level vulnerability queries
The analysis concepts of the previous sections set up the
final queries for gas-focused vulnerabilities. These are
made precise by combining several distinct concepts. Figure
7 shows the final output relations of the MadMax analysis in
slightly simplified (and inlined to single rule) form.

Consider, for instance, the UnboundedMassOp logic: it
examines whether an array that can grow in size as the result
of a public function has contents that are loaded or stored
(the Flows(storeOffsetVar, index) allows dereferencing from
the beginning of the contents), inside a loop whose bound is
based on the array size and that contains an induction vari-
able that affects the address loaded or stored.

The WalletGriefing query is even more precise,
requiring a load from the dynamic array, flow of the
loaded value to a call whose result is the condition of a
throw statement. The call and the throw need to be in the
same loop, which also has an induction variable that

Figure 4. Outputs of data structure analysis.

VARINDEXESSTORAGE(s : S, v : V) Variable v reads or writes to storage at statement s
ARRAYSIZEVARIABLE(sv : V, arrId : C, kv : V) Array arrId has its length and address read in sv and kv, respectively
ARRAYIDTOSTORAGEINDEX(arrId : C, v : V) v holds a storage address that is part of (outermost) array arrId

3 The price of ETH/USD and contract balances are both volatile quantities.
To fix a reference point, all numbers given are as of April 9th, 2018 (with ETH/
USD at $400.72).

research highlights

94 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

operation vulnerability may be costly, deterring attackers.
However, this does not affect the vulnerable nature of the
contract against motivated malicious actors.

7. CONCLUDING DISCUSSION
We presented MadMax, a tool for finding gas-focused vulner-
abilities in Ethereum smart contracts. We identify new vul-
nerabilities for Ethereum smart contracts and demonstrate
the first successful design of a static analysis tool at the EVM
bytecode level that painstakingly decompiles and recon-
structs the program’s higher-level semantics. The MadMax
approach utilizes best-of-breed techniques and technolo-
gies: from abstract-interpretation-based low-level analysis for
decompilation to declarative program analysis techniques
for higher-level analysis. Our approach is validated using all
deployed smart contracts on the blockchain and demon-
strates scalability and concrete effectiveness. The threat to
some of these smart contracts presented by our tools is over-
whelming in financial terms, especially considering the high
precision of warnings in a manually-inspected sample.

Gas-focused vulnerabilities are likely to become more

relevant in the foreseeable future. Gas (or a quantity like it) is
fundamental in blockchain computation and is, for example,
included in the design of the upcoming Facebook Libra.
Computation under gas constraints requires different coding
styles than in traditional programming domains—a simple
linear loop over a data structure may render a contract vulner-
able! This year, Ethereum’s Istanbul update makes SLOAD four
times more expensive, whereas making SSTORE cheaper.
Exploiting the unbounded operation vulnerability involves
many state changing operations to cause the victim to per-
form more state reading operations. The cost to the attacker
is therefore relative to the ratio of the cost of storing against
the cost of reading. Hence, this vulnerability will become
cheaper to exploit. Moreover, Libra’s virtual machine will
have state reading operations such as ImmBorrowField
and ReadRef. These will be as expensive as state writing
operations MutBorrowField and WriteRef, which would
make the unbounded operations’ vulnerability cheaper to
exploit in Libra than in Ethereum.

MadMax is the first published analysis to detect threats
that require coordination across multiple transactions. This
is representative of the future trends for automated security
analyses: the analysis will need to account for state changes by
independent transactions, long before the final attack can be
perpetrated. Furthermore, future threats are likely to involve
multicontract or whole-app attacks—for example, with coor-
dination between the off-blockchain part of a decentralized
application and its on-blockchain (smart contract) part. This

Figure 7. Top-level query for unbounded mass operations, wallet
griefing, and overflow vulnerabilities.

UNBOUNDEDMASSOP(loop) ←
INCREASEDSTORAGEONPUBLICFUNCTION(arrayId),
ARRAYIDTOSTORAGEINDEX(arrayId, storeOffsetVar),
FLOWS(storeOffsetVar, index),
VARINDEXESSTORAGE(storeOrLoadStmt, index),
INLOOP(storeOrLoadStmt, loop),
ARRAYITERATOR(loop, arrayId),
INDUCTIONVAR(i, loop),
FLOWS(i, index),
!POSSIBLYRESUMABLELOOP(loop).

WALLETGRIEFING(loop) ←
INCREASEDSTORAGEONPUBLICFUNCTION(arrayId),
ARRAYIDTOSTORAGEINDEX(arrayId, storeOffsetVar),
FLOWS(storeOffsetVar, index),
[loadVar := SLOAD(index)],
FLOWS(loadVar, target),
INLOOP([resVar := CALL(target, **)], loop),
INLoop([THROWI(condVar)], loop),
FLOWS(resVar, condVar),
INDUCTIONVAR(i, loop),
FLOWS(i, index).

LOOPOVERFLOW(loop) ←
DYNAMICALLYBOUND(loop),
[to := CASTN(from, n)], n ≤ 16,
INDUCTIONVAR(to, loop),
INDUCTIONVAR(from, loop),
FLOWS(to, condVar),
LOOPEXITCOND(condVar, loop).

Figure 5. Storage structure and contents (bottom) for given contract
(top). sha3 is the keccak256 hash function.

contract Foo {
uint i0;
uint i1;

uint [][]a;
..

}

address contents
0 i0
1 i1
2 a.length

SHA3(2) a[0].length
SHA3(2) + 1 a[1].length

SHA3(SHA3(2)) a[0][0]
SHA3(SHA3(2)) + 1 a[0][1]

SHA3(SHA3(2) + 1) a[1][0]
SHA3(SHA3(2) + 1) + 1 a[1][1]

Figure 6. Datalog rules for identifying storage requirements increase
in public functions.

INCREASEDSTORAGEONPUBLICFUNCTION(arrayId) ←
ARRAYSIZEVARIABLE(sizeVar, arrayId, keyVar),
INPUBLICFUNCTION([sizeVar’ := ADD(sizeVar, *)], f),
INPUBLICFUNCTION([SSTORE(keyVar, sizeVar’)], f).

ARRAYITERATOR(loop, arrayId) ←
LOOPBOUNDBY(loop, sizeVar),
ARRAYSIZEVARIABLE(sizeVar, arrayId, *).

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 95

 5. Flanagan, C., Leino, K.R.M., Lillibridge, M.,
Nelson, G., Saxe, J.B., Stata, R. Extended
static checking for Java. In Proceedings
of Programming Language Design and
Implementation. (2002).

 6. Grech, N., Brent, L., Scholz, B.,
Smaragdakis, Y. Gigahorse: Thorough,
declarative decompilation of smart
contracts. In Proceedings of
International Conference on Software
Engineering (ICSE), 2019.

 7. Grech, N., Kong, M., Jurisevic, A., Brent, L.,
Scholz, B., Smaragdakis, Y. Madmax:
Surviving out-of-gas conditions in
ethereum smart contracts. In
Proceedings of the ACM Programming
Languages, 2 (OOPSLA) (Nov. 2018).

 8. Immerman, N. Graduate texts in
computer science. Descriptive
Complexity. Springer, 1999.

 9. Naik, M. Chord: A versatile platform
for program analysis. In
Programming Language Design and
Implementation, 2011. Tutorial.

 10. Naik, M., Park, C., Sen, K., Gay, D.
Effective static deadlock detection. In
Proceedings of International
Conference on Software
Engineering, 2009.

 11. Nakamoto, S. Bitcoin: A peer-to-peer
electronic cash system, 2009. https://
www.bitcoin.org/bitcoin.pdf

 12. Shivers, O. Control-flow analysis of
higher-order languages. PhD thesis,

Carnegie Mellon University (May 1991).
 13. Shivers, O. Higher-order control-flow

analysis in retrospect: lessons
learned, lessons abandoned. In Best
of PLDI 1988. K.S. McKinley, ed.
Volume 39, 2004, 257–269

 14. Smaragdakis, Y., Balatsouras, G.
Pointer analysis. Found. Trends
Program. Lang. 1, 2 (2015), 1–69.

 15. Thielecke, H. Continuations, functions
and jumps. ACM SIGACT News, 30
(Jan. 1999), 33–42.

 16. Various. GovernMental page. http://
governmental.github.io/GovernMental/.

 17. Various. Safety-ethereum wiki. https://
github.com/ethereum/wiki/wiki/Safety.
Accessed: 2018–04–15.

 18. Various. GitHub-ethereum/solidity:
The solidity contract-oriented
programming language, 2018. https://
github.com/ethereum/solidity

 19. Various. Vandal–A static analysis
framework for ethereum bytecode,
2018. https://github.com/
usyd-blockchain/vandal/.

 20. Vessenes, P. Ethereum griefing
wallets: Send w/throw is dangerous,
2016. http://vessenes.com/
ethereum-griefing-wallets-send-w-
throw-considered-harmful

 21. Wood, G. Ethereum: A secure decentralised
generalised transaction ledger, 2014.
http://gavwood.com/Paper.pdf

References
 1. Atzei, N., Bartoletti, M., Cimoli, T. A

Survey of Attacks on Ethereum Smart
Contracts. Technical Report.
Cryptology ePrint Archive: Report
2016/1007, https://eprint.iacr.
org/2016/1007, 2016.

 2. Bravenboer, M., Smaragdakis, Y.
Strictly declarative specification
of sophisticated points-to analyses.
In Proceedings of Object Oriented

Programming, Systems, Languages,
and Applications, 2009.

 3. Brent, L., Jurisevic, A., Kong, M.,
Liu, E., Gauthier, F., Gramoli, V., Holz, R.,
Scholz, B. Vandal: A scalable security
analysis framework for smart
contracts. CoRR, 2018. abs/1802.08660

 4. Buterin, V. A next-generation smart
contract and decentralized application
platform, 2013. https://github.com/
ethereum/wiki/wiki/White-Paper Copyright held by authors/owners. Publication rights licensed to ACM.

Neville Grech (me@nevillegrech.com),
University of Athens, Greece.

Michael Kong and Anton Jurisevic
({mkon1090, ajur4521}@uni.sydney.edu.
au), The University of Sydney, Australia.

Lexi Brent and Bernhard Scholz ({lexi.
brent, bernhard.scholz@sydney.edu.au}),
The University of Sydney, Australia.

Yannis Smaragdakis (smaragd@di.uoa.gr),
University of Athens, Greece.

is a challenging next frontier for security analysis tools. In
the case of MadMax, multitransaction reasoning is enabled
by positing high-level properties, such as “safely resumable
loop.” In turn, this is made possible by the declarative nature
of the analysis, which allows a concise, logical specification of
complex properties. The same declarative approach may well
play an important role in future scaling of analyses to multi-
contract, whole-application reasoning.

Acknowledgments
This research was supported partially by the Australian Government
through the Australian Research Council’s Discovery Projects fund-
ing scheme (project ARC DP180104030). We gratefully acknowl-
edge funding by the European Research Council, grants
307334 and 790340. In addition, the research work disclosed
is partially funded by the REACH HIGH Scholars Programme
– Post-Doctoral Grants. The grant is part-financed by the European
Union, Operational Program II, Cohesion Policy 2014–2020
(Investing in human capital to create more opportunities and
promote the well-being of society – European Social Fund).

