me@nevillegrech.com

MadMax

Surviving Out-of-Gas Conditions in Ethereum Smart Contracts
Neville Grech (Athens/Malta) i
Michael Kong (Sydney) =
Anton Jurisevic (Sydney)
Lexi Brent (Syd N ey) =
Bernhard Scholz (Sydney)
Yannis Smaragdakis (Athens) =i

OOPSLA ‘18

nevillegrech.com/2018/madmax.html

Terminology

Smart Contracts

*Programs running on the Ethereum
Blockchain (usually transacting $$%)

Solidity

*The high-level language for writing them
Gas

*Fee pald for running them

Earned by the miner & bounded/hard coded

n nevillegrech.com/2018/madmax.html _

Complexity, Balance and Risk

Market cap
> $50B

10° |

'—I
o
~

=
o
w

balance (Ether)

[
o
N

10! |

10! 1072 103 104

number of basic blocks

Complex contracts, which hold majority
of Ether, are ripe targets for attackers.

MadMax is Unique

Cutting-edge (exhaustive) static analysis
* Abstract Interpretation, CFA Flow Analysis, memory modeling

Performs analysis directly on the bytecode
*Source code only available for 0.34% of contracts (Etherscan)
*Developed the Vadnal decompiler for this purpose.

Evaluated on the entire Ethereum blockchain
Found $5B on vulnerable contracts (81% estimated precision)

ﬂ nevillegrech.com/2018/madmax.html _

nevillegrech.com/2018/madmax.html

Gas Focussed Vulnerabilities

*Gas is needed to execute contracts:

Pald for by the account that calls the smart contract.
Has monetary value - prevents wasting of resources.
f not enough gas Is budgeted, transaction Is reverted.

Possibly blocking forever due to lack of progress.

 Contract susceptible to DoS attacks if
attacker can cause it to require
unbounded gas.

nevillegrech.com/2018/madmax.html

Vulnerability 1: Unbounded Mass Ops

contract NaiveBank {
struct Account {
address addr;
uint balance;

}

Account accounts|[];

function applyInterest() returns (uint) {
for (uint i = 0; i < accounts.length; i++) {

accounts[i].balance = accounts[i].balance * 105 / 100;

}

return accounts.length;

}

function openAccount() returns (uint) { .. }

}

n nevillegrech.com/2018/madmax.html _

Vulnerability 2: Wallet Griefing

for (uint 1 = 0; i < investors.length; i++) {
if (investors[i].invested < min_investment) {

if (!(investors[i].addr.send(investors[i].dividendAmount))) {
throw;

}

investors[i] = newInvestor;

}
}

n nevillegrech.com/2018/madmax.html _

Vulnerability 3: Integer Overflow

contract Overflow {
Payee payees|[];

function goOverAll() {
for (var i = 0; i < payees.length; i++) {

} uint8

m nevillegrech.com/2018/madmax.html _

nevillegrech.com/2018/madmax.html

11

Control Flow in EVM Bytecode

PUSH4 <return> // return address

PUSH4 OXFF // push data
PUSH4 <foo> n address
JUMP

return: JUMPDEST
Detect flows of

o addresses
foo: JUMPDEST
POP

JUMP to ‘return’

Decompilation in a Nutshell

1. Basic block boundaries

2. Stack shape and data flow
3. Jump targets

4. Function boundaries

5. Conversion to 3-address IR

Why context sensitivity?

E nevillegrech.com/2018/madmax.html

Intermediate Language

to := CONST(c)
where to : Variable , c: Const

JUMPI(cond, label)
where cond : Variable , label : Statement

to := SHA3(indeXx, length)
where index, length, to : Variable

m nevillegrech.com/2018/madmax.html _

nevillegrech.com/2018/madmax.html

15

Higher Level Analyses

Structured loop reconstruction:
* [nduction Variables & Loop Exit Conditions
Alias Analyses

High level data structure semantic
analysis

Cool concepts such as:
« IncreasedStorageOnPublicFunction

* PossiblyResumablelLoop

E nevillegrech.com/2018/madmax.html _

Modeling Storage & Data Structures

address contents
10

11
a.length

S

—

- |

contract Foo
uint 10;
uint 11;

sHA3(2) | a[0].length
sHA3(2) + 1 | a[1].length

uint [1[]a;
- sHA3(sHA3(2)) | a[0][0]
} sHA3(SHA3(2)) + 1 | a[0][1]

SHA3(sHA3(2) + 1) | a[1][0]
SHA3(sHA3(2) + 1) + 1 | a[1][1]

nevillegrech.com/2018/madmax.html _

Example top-level query

UnboundedMassOp(loop) -~
IncreasedStorageOnPublicFunction(arrayId)
ArrayIdToStorageIndex(arrayId, storeOffsetVar)i
Flows(storeOffsetVar, index)m
VarIndexesStorage(storeOrLoadStmt, index)x
InLoop(storeOrLoadStmt, loop)
ArraylIterator(loop, arrayId)x
InductionVvar (i, loop)w
Flows(i, index)

IPossiblyResumableLoop(loop).

m nevillegrech.com/2018/madmax.html _

nevillegrech.com/2018/madmax.html

19

Results: Effectiveness

Analysed entire blockchain:
6.33M contracts (90k unique) in 10 hours
4 1% susceptible to unbounded iteration.
0.12% susceptible to wallet griefing.
1.2% susceptible to loop overflows.

Combined holding of 7.07 million ETH ~
$5B

81% estimated precision

m nevillegrech.com/2018/madmax.html _

Insights: Iteration and Data Structures

Dyn. Bound Dyn. Bound Has Maps Has Arrays
(storage) | | (other) .

Has Array Iterators Universe: 91800 Has Nested Data Structures Universe: 91800

Reconstructing high level data structure
semantics critical for low false positive rate.

Related work

Approach Works Soundy Automated Bytecode General
- Oyente by Luu et al. (2016)

Symbolic - Maian by Nikolic et al. (2018) (é

Execution - gasper by Chen et al. (2017)

- Grossman et al. (2017)

- Proofs in Isabelle/HOL by
Hirai (2017) & Amani et al.

Formal (2018) 0%
e - Proofs in the K framework (?
Verif)
erification by Hildenbrandt et al. (2017)
- Formalism of EVM in F* by

Bhargavan et al. (2016)

B> 49 <9 &
B> &> 49 <9

Abstract - Zeus by Kalra et al. (2018)

interpretation - FSolidM by Mavridou and

on Solidity Laszka (2018)

Abstract MadMax (OOPSLA'18)

interpretation ﬂ% u%
on EVM (Our Approach)

bytecode

E nevillegrech.com/2018/madmax.html

Conclusions

MadMax, a vulnerability detection tool:
*Scales to the entire Blockchain
*Interesting results, practical iImpact

Datalog lends itself well to:

*Program analyzers (even flow sensitive ones)
*High level decompilers

Decompilation is a very important step & current

work focuses on this

m nevillegrech.com/2018/madmax.html

Current work: Fully declarative

decompilation

Original 1. Whole contract ctx & flow sensitive analysis
Bytecode l

2. Function extraction algorithms

Whole program

3 address IR
+ CFG 3. Function argument inference

with flow sensitive analysis

3 address IR

(o) + function bounds
+ local CFGs
Coca) L o) Functional

= 3-address code

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25

