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Terminology

Smart Contracts

*Programs running on the Ethereum
Blockchain (usually transacting $$%)

Solidity

*The high-level language for writing them
Gas

*Fee pald for running them

Earned by the miner & bounded/hard coded
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Complexity, Balance and Risk

Market cap
> $50B
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Complex contracts, which hold majority
of Ether, are ripe targets for attackers.




MadMax is Unique

Cutting-edge (exhaustive) static analysis
* Abstract Interpretation, CFA Flow Analysis, memory modeling

Performs analysis directly on the bytecode
*Source code only available for 0.34% of contracts (Etherscan)
*Developed the Vadnal decompiler for this purpose.

Evaluated on the entire Ethereum blockchain
Found $5B on vulnerable contracts (81% estimated precision)
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Gas Focussed Vulnerabilities

*Gas is needed to execute contracts:

Pald for by the account that calls the smart contract.
Has monetary value - prevents wasting of resources.
f not enough gas Is budgeted, transaction Is reverted.

Possibly blocking forever due to lack of progress.

 Contract susceptible to DoS attacks if
attacker can cause it to require
unbounded gas.
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Vulnerability 1: Unbounded Mass Ops

contract NaiveBank {
struct Account {
address addr;
uint balance;

}

Account accounts|[];

function applyInterest() returns (uint) {
for (uint i = 0; i < accounts.length; i++) {

accounts[i].balance = accounts[i].balance * 105 / 100;

}

return accounts.length;

}

function openAccount() returns (uint) { .. }

}
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Vulnerability 2: Wallet Griefing

for (uint 1 = 0; i < investors.length; i++) {
if (investors[i].invested < min_investment) {

if (!(investors[i].addr.send(investors[i].dividendAmount))) {
throw;

}

investors[i] = newInvestor;

}
}
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Vulnerability 3: Integer Overflow

contract Overflow {
Payee payees|[];

function goOverAll() {
for (var i = 0; i < payees.length; i++) {

} uint8
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Control Flow in EVM Bytecode

PUSH4 <return> // return address

PUSH4 OXFF // push data
PUSH4 <foo> n address
JUMP

return: JUMPDEST
Detect flows of

o addresses
foo: JUMPDEST
POP

JUMP to ‘return’



Decompilation in a Nutshell

1. Basic block boundaries

2. Stack shape and data flow
3. Jump targets

4. Function boundaries

5. Conversion to 3-address IR

Why context sensitivity?
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Intermediate Language

to := CONST(c)
where to : Variable , c: Const

JUMPI(cond, label)
where cond : Variable , label : Statement

to := SHA3(indeXx, length)
where index, length, to : Variable
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Higher Level Analyses

Structured loop reconstruction:
* [nduction Variables & Loop Exit Conditions
Alias Analyses

High level data structure semantic
analysis

Cool concepts such as:
« IncreasedStorageOnPublicFunction

* PossiblyResumablelLoop
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Modeling Storage & Data Structures

address contents
10

11
a.length

S

—

- |

contract Foo
uint 10;
uint 11;

sHA3(2) | a[0].length
sHA3(2) + 1 | a[1].length

uint [1[]a;
- sHA3(sHA3(2)) | a[0][0]
} sHA3(SHA3(2)) + 1 | a[0][1]

SHA3(sHA3(2) + 1) | a[1][0]
SHA3(sHA3(2) + 1) + 1 | a[1][1]
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Example top-level query

UnboundedMassOp(loop) -~
IncreasedStorageOnPublicFunction(arrayId)
ArrayIdToStorageIndex(arrayId, storeOffsetVar)i
Flows(storeOffsetVar, index)m
VarIndexesStorage(storeOrLoadStmt, index)x
InLoop(storeOrLoadStmt, loop)
ArraylIterator(loop, arrayId)x
InductionVvar (i, loop)w
Flows(i, index)

IPossiblyResumableLoop(loop).
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Results: Effectiveness

Analysed entire blockchain:
6.33M contracts (90k unique) in 10 hours
4 1% susceptible to unbounded iteration.
0.12% susceptible to wallet griefing.
1.2% susceptible to loop overflows.

Combined holding of 7.07 million ETH ~
$5B

81% estimated precision
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Insights: Iteration and Data Structures

Dyn. Bound Dyn. Bound Has Maps Has Arrays
(storage) | | (other) .

Has Array Iterators Universe: 91800 Has Nested Data Structures Universe: 91800

Reconstructing high level data structure
semantics critical for low false positive rate.



Related work

Approach Works Soundy Automated Bytecode General
- Oyente by Luu et al. (2016)

Symbolic - Maian by Nikolic et al. (2018) (é

Execution - gasper by Chen et al. (2017)

- Grossman et al. (2017)

- Proofs in Isabelle/HOL by
Hirai (2017) & Amani et al.

Formal (2018) 0%
e - Proofs in the K framework (?
Verif )
erification by Hildenbrandt et al. (2017)
- Formalism of EVM in F* by

Bhargavan et al. (2016)

B> 49 <9 &
B> &> 49 <9

Abstract - Zeus by Kalra et al. (2018)

interpretation - FSolidM by Mavridou and

on Solidity Laszka (2018)

Abstract MadMax (OOPSLA'18)

interpretation ﬂ% u%
on EVM (Our Approach)

bytecode
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Conclusions

MadMax, a vulnerability detection tool:
*Scales to the entire Blockchain
*Interesting results, practical iImpact

Datalog lends itself well to:

*Program analyzers (even flow sensitive ones)
*High level decompilers

Decompilation is a very important step & current

work focuses on this
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Current work: Fully declarative

decompilation

Original 1. Whole contract ctx & flow sensitive analysis
Bytecode l

2. Function extraction algorithms

Whole program

3 address IR
+ CFG 3. Function argument inference

with flow sensitive analysis

3 address IR

(o) + function bounds
+ local CFGs
Coca) L o) Functional

= 3-address code
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