
MadMax
Surviving Out-of-Gas Conditions in Ethereum Smart Contracts

Neville Grech (Athens/Malta)
Michael Kong (Sydney)
Anton Jurisevic (Sydney)
Lexi Brent (Sydney)
Bernhard Scholz (Sydney)
Yannis Smaragdakis (Athens)

OOPSLA ‘18

me@nevillegrech.com

nevillegrech.com/2018/madmax.html



nevillegrech.com/2018/madmax.html2

Terminology

Smart Contracts
●Programs running on the Ethereum 
Blockchain (usually transacting $$$)

Solidity
●The high-level language for writing them

Gas
●Fee paid for running them 
●Earned by the miner & bounded/hard coded



3

Complexity, Balance and Risk

Complex contracts, which hold majority 
of Ether, are ripe targets for attackers.

Market cap 
> $50B



nevillegrech.com/2018/madmax.html5

MadMax is Unique

Cutting-edge (exhaustive) static analysis
● Abstract Interpretation, CFA Flow Analysis, memory modeling

Performs analysis directly on the bytecode
● Source code only available for 0.34% of contracts (Etherscan)
● Developed the Vadnal decompiler for this purpose.

Evaluated on the entire Ethereum blockchain
● Found $5B on vulnerable contracts (81% estimated precision)



nevillegrech.com/2018/madmax.html

6

Gas-focussed vulnerabilities



nevillegrech.com/2018/madmax.html7

Gas Focussed Vulnerabilities

● Gas is needed to execute contracts:
● Paid for by the account that calls the smart contract.
● Has monetary value - prevents wasting of resources.
● If not enough gas is budgeted, transaction is reverted.
● Possibly blocking forever due to lack of progress.

● Contract susceptible to DoS attacks if 
attacker can cause it to require 
unbounded gas.



nevillegrech.com/2018/madmax.html8

Vulnerability 1: Unbounded Mass Ops

contract NaiveBank {
  struct Account {
    address addr;
    uint balance;
  }
  Account accounts[];

  function applyInterest() returns (uint) {
    for (uint i = 0; i < accounts.length; i++) {
      // apply 5 percent interest
      accounts[i].balance = accounts[i].balance * 105 / 100;
    }
    return accounts.length;
  }
  function openAccount() returns (uint) { … }
}



nevillegrech.com/2018/madmax.html9

Vulnerability 2: Wallet Griefng

for (uint i = 0; i < investors.length; i++) {  

  if (investors[i].invested < min_investment) {

    // Refund, and check for failure. 

    // Looks benign but locks entire contract

    // if attacked by a griefing wallet.

    if (!(investors[i].addr.send(investors[i].dividendAmount))) { 

        throw;

    }

    investors[i] = newInvestor;

  }

}



nevillegrech.com/2018/madmax.html10

Vulnerability 3: Integer Overfow

contract Overflow {
  Payee payees[];
  
  function goOverAll() {
    for (var i = 0; i < payees.length; i++) { 
    ... 
    }
  }
  ...
}

uint8



nevillegrech.com/2018/madmax.html

11

The Vandal Decompiler



12

Control Flow in EVM Bytecode

         PUSH4 <return>  // return address
         PUSH4 0xFF      // push data
         PUSH4 <foo>     // function address
         JUMP            // jumps to ‘foo’
return:  JUMPDEST 
         ...
         ...
foo:     JUMPDEST             
         POP             // pops data
         JUMP            // jumps to ‘return’  

Detect fows of
addresses



nevillegrech.com/2018/madmax.html13

Decompilation in a Nutshell

1. Basic block boundaries

2. Stack shape and data fow

3. Jump targets

4. Function boundaries

5. Conversion to 3-address IR

Why context sensitivity?



nevillegrech.com/2018/madmax.html14

Intermediate Language

to := CONST(c)

where to ∶ Variable , c ∶ Const

JUMPI(cond, label)

where cond ∶ Variable , label ∶ Statement

to := SHA3(index, length)

where index, length, to ∶ Variable



nevillegrech.com/2018/madmax.html

15

Higher level analyses



nevillegrech.com/2018/madmax.html16

Higher Level Analyses

Structured loop reconstruction:
● Induction Variables & Loop Exit Conditions

Alias Analyses

High level data structure semantic 
analysis

Cool concepts such as:
● IncreasedStorageOnPublicFunction
● PossiblyResumableLoop 



nevillegrech.com/2018/madmax.html17

Modeling Storage & Data Structures



nevillegrech.com/2018/madmax.html18

Example top-level query

UnboundedMassOp(loop) ←

  IncreasedStorageOnPublicFunction(arrayId) ⨝
  ArrayIdToStorageIndex(arrayId, storeOffsetVar)⨝

  Flows(storeOffsetVar, index)⨝

  VarIndexesStorage(storeOrLoadStmt, index)⨝
  InLoop(storeOrLoadStmt, loop)⨝

  ArrayIterator(loop, arrayId)⨝

  InductionVar(i, loop)⨝
  Flows(i, index) ⨝
  !PossiblyResumableLoop(loop).



nevillegrech.com/2018/madmax.html

19

Experimental Evaluation



nevillegrech.com/2018/madmax.html20

Results: Efectiveness

Analysed entire blockchain:
6.33M contracts (90k unique) in 10 hours

4.1% susceptible to unbounded iteration.

0.12% susceptible to wallet griefng.

1.2% susceptible to loop overfows.

Combined holding of 7.07 million ETH ~ 
$5B

81% estimated precision



nevillegrech.com/2018/madmax.html22

Insights: Iteration and Data Structures

Reconstructing high level data structure 
semantics critical for low false positive rate.



nevillegrech.com/2018/madmax.html23

Related work
Approach Works Soundy Automated Bytecode General

Symbolic 
Execution

- Oyente by Luu et al. (2016)
- Maian by Nikolic et al. (2018)
- gasper by Chen et al. (2017)
- Grossman et al. (2017)

� � � �
Formal 
Verification

- Proofs in Isabelle/HOL by 
Hirai (2017) & Amani et al. 
(2018)
- Proofs in the K framework
by Hildenbrandt et al. (2017)
- Formalism of EVM in F* by 
Bhargavan et al. (2016)

� � � �
Abstract 
interpretation 
on Solidity

- Zeus by Kalra et al. (2018)
- FSolidM by Mavridou and 
Laszka (2018) � � � �

Abstract 
interpretation 
on EVM 
bytecode

MadMax (OOPSLA’18)

(Our Approach) � � � �



nevillegrech.com/2018/madmax.html24

Conclusions

MadMax, a vulnerability detection tool:
● Scales to the entire Blockchain
● Interesting results, practical impact

Datalog lends itself well to:
● Program analyzers (even fow sensitive ones)
● High level decompilers

Decompilation is a very important step & current 
work focuses on this



25

Current work: Fully declarative 
decompilation

Original
Bytecode

Whole program
3 address IR

+ CFG

3 address IR
+ function bounds

+ local CFGs

Functional
3-address code

1. Whole contract ctx & fow sensitive analysis

2. Function extraction algorithms

3. Function argument inference
with fow sensitive analysis


	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25

