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Terminology

Smart Contracts
●Programs running on the Ethereum 
Blockchain (usually transacting $$$)

Solidity
●The high-level language for writing them

Gas
●Fee paid for running them 
●Earned by the miner & bounded/hard coded
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Complexity, Balance and Risk

Complex contracts, which hold majority 
of Ether, are ripe targets for attackers.

Market cap 
> $50B
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MadMax is Unique

Cutting-edge (exhaustive) static analysis
● Abstract Interpretation, CFA Flow Analysis, memory modeling

Performs analysis directly on the bytecode
● Source code only available for 0.34% of contracts (Etherscan)
● Developed the Vadnal decompiler for this purpose.

Evaluated on the entire Ethereum blockchain
● Found $5B on vulnerable contracts (81% estimated precision)
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Gas-focussed vulnerabilities
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Gas Focussed Vulnerabilities

● Gas is needed to execute contracts:
● Paid for by the account that calls the smart contract.
● Has monetary value - prevents wasting of resources.
● If not enough gas is budgeted, transaction is reverted.
● Possibly blocking forever due to lack of progress.

● Contract susceptible to DoS attacks if 
attacker can cause it to require 
unbounded gas.
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Vulnerability 1: Unbounded Mass Ops

contract NaiveBank {
  struct Account {
    address addr;
    uint balance;
  }
  Account accounts[];

  function applyInterest() returns (uint) {
    for (uint i = 0; i < accounts.length; i++) {
      // apply 5 percent interest
      accounts[i].balance = accounts[i].balance * 105 / 100;
    }
    return accounts.length;
  }
  function openAccount() returns (uint) { … }
}
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Vulnerability 2: Wallet Griefng

for (uint i = 0; i < investors.length; i++) {  

  if (investors[i].invested < min_investment) {

    // Refund, and check for failure. 

    // Looks benign but locks entire contract

    // if attacked by a griefing wallet.

    if (!(investors[i].addr.send(investors[i].dividendAmount))) { 

        throw;

    }

    investors[i] = newInvestor;

  }

}
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Vulnerability 3: Integer Overfow

contract Overflow {
  Payee payees[];
  
  function goOverAll() {
    for (var i = 0; i < payees.length; i++) { 
    ... 
    }
  }
  ...
}

uint8
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The Vandal Decompiler
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Control Flow in EVM Bytecode

         PUSH4 <return>  // return address
         PUSH4 0xFF      // push data
         PUSH4 <foo>     // function address
         JUMP            // jumps to ‘foo’
return:  JUMPDEST 
         ...
         ...
foo:     JUMPDEST             
         POP             // pops data
         JUMP            // jumps to ‘return’  

Detect fows of
addresses
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Decompilation in a Nutshell

1. Basic block boundaries

2. Stack shape and data fow

3. Jump targets

4. Function boundaries

5. Conversion to 3-address IR

Why context sensitivity?
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Intermediate Language

to := CONST(c)

where to ∶ Variable , c ∶ Const

JUMPI(cond, label)

where cond ∶ Variable , label ∶ Statement

to := SHA3(index, length)

where index, length, to ∶ Variable
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Higher level analyses
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Higher Level Analyses

Structured loop reconstruction:
● Induction Variables & Loop Exit Conditions

Alias Analyses

High level data structure semantic 
analysis

Cool concepts such as:
● IncreasedStorageOnPublicFunction
● PossiblyResumableLoop 
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Modeling Storage & Data Structures
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Example top-level query

UnboundedMassOp(loop) ←

  IncreasedStorageOnPublicFunction(arrayId) ⨝
  ArrayIdToStorageIndex(arrayId, storeOffsetVar)⨝

  Flows(storeOffsetVar, index)⨝

  VarIndexesStorage(storeOrLoadStmt, index)⨝
  InLoop(storeOrLoadStmt, loop)⨝

  ArrayIterator(loop, arrayId)⨝

  InductionVar(i, loop)⨝
  Flows(i, index) ⨝
  !PossiblyResumableLoop(loop).
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Experimental Evaluation
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Results: Efectiveness

Analysed entire blockchain:
6.33M contracts (90k unique) in 10 hours

4.1% susceptible to unbounded iteration.

0.12% susceptible to wallet griefng.

1.2% susceptible to loop overfows.

Combined holding of 7.07 million ETH ~ 
$5B

81% estimated precision
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Insights: Iteration and Data Structures

Reconstructing high level data structure 
semantics critical for low false positive rate.
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Related work
Approach Works Soundy Automated Bytecode General

Symbolic 
Execution

- Oyente by Luu et al. (2016)
- Maian by Nikolic et al. (2018)
- gasper by Chen et al. (2017)
- Grossman et al. (2017)

� � � �
Formal 
Verification

- Proofs in Isabelle/HOL by 
Hirai (2017) & Amani et al. 
(2018)
- Proofs in the K framework
by Hildenbrandt et al. (2017)
- Formalism of EVM in F* by 
Bhargavan et al. (2016)

� � � �
Abstract 
interpretation 
on Solidity

- Zeus by Kalra et al. (2018)
- FSolidM by Mavridou and 
Laszka (2018) � � � �

Abstract 
interpretation 
on EVM 
bytecode

MadMax (OOPSLA’18)

(Our Approach) � � � �



nevillegrech.com/2018/madmax.html24

Conclusions

MadMax, a vulnerability detection tool:
● Scales to the entire Blockchain
● Interesting results, practical impact

Datalog lends itself well to:
● Program analyzers (even fow sensitive ones)
● High level decompilers

Decompilation is a very important step & current 
work focuses on this
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Current work: Fully declarative 
decompilation

Original
Bytecode

Whole program
3 address IR

+ CFG

3 address IR
+ function bounds

+ local CFGs

Functional
3-address code

1. Whole contract ctx & fow sensitive analysis

2. Function extraction algorithms

3. Function argument inference
with fow sensitive analysis
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