
Preemptive Type Checking
in Dynamically Typed Languages

Neville Grech�, Julian Rathke, and Bernd Fischer

Electronics and Computer Science, University of Southampton
{n.grech,jr2,b.fischer}@ecs.soton.ac.uk

Abstract. We describe a type system that identifies potential type errors in dy-
namically typed languages like Python. The system uses a flow-sensitive static
analysis on bytecodes to compute, for every variable and program point, over-
approximations of the variable’s present and future use types. If the future use
types are not subsumed by the present types, the further program execution may
raise a type error, and a narrowing assertion is inserted; if future use and present
types are disjoint, it will raise a type error, and a type error assertion is inserted.
We prove that the assertions are inserted in optimal locations and thus preempt
type errors earlier than dynamic, soft, and gradual typing. We describe the details
of our type inference and assertion insertion, and demonstrate the results of an
implementation of the system with a number of examples.

1 Introduction

Dynamically typed languages such as Python are among the most widely used lan-
guages [25]. In these languages, the principle type of any variable in a program is de-
termined through runtime computations and can change throughout the execution and
between different runs. Type checking is typically carried out as the program is exe-
cuting and type errors manifest themselves as runtime errors or exceptions rather than
being detected before execution. However, type errors are an indication that the code
has latent computation errors and is therefore potentially dangerous. For example, the
Mars climate orbiter crashed into the atmosphere due to metric mixup [1]. The earlier
type errors are detected, the earlier the code can be fixed.

Fig. 1 shows a small example program with type errors. In a dynamically typed lan-
guage, the program will fail at either line 15 or line 17, depending on whether arguments
are passed to the program. Using the standard Python interpreter we can get for example
the following trace:

$ python foo.py
enter initial value: 45
Traceback (most recent call last):

File "foo.py", line 21, in <module>
File "foo.py", line 15, in main

TypeError: bad operand type for abs(): ’str’

� The research work disclosed in this publication is partially funded by a Strategic Educational
Pathways Scholarship (Malta). The scholarship is part-financed by the European Union – Eu-
ropean Social Fund (ESF).

Z. Liu, J. Woodcock, and H. Zhu (Eds.): ICTAC 2013, LNCS 8049, pp. 195–212, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

{n.grech,jr2,b.fischer}@ecs.soton.ac.uk

196 N. Grech, J. Rathke, and B. Fischer

1 from sys import argv
2
3 def compute(x1=None,x2=None,x3=None):
4 global initial
5 if initial%5==0:
6 fin=int(input(’enter final value: ’))
7 return x1+x2+x3+fin
8 else:
9 initial-=1

10 return compute(x2,x3,initial)
11
12 def main():
13 global initial
14 if len(argv)<2:
15 initial=abs(input(’enter initial value: ’))
16 else:
17 initial=abs(argv[1])
18 print(’outcome:’,compute())
19
20 if __name__==’__main__’:
21 main()

Fig. 1. Dynamically typed program with type errors in lines 15 and 17

We can see that the program only raises a type error when it executes line 15, after the
user input has already been taken. We cannot see from the error trace, however, that
the program actually contains another type error, i.e., at line 17, which in cases when
the modulus of the entered number with 5 is less than 3. To discover this error, we are
reliant on sufficient testing.

Our goal here is the development of a preemptive type checking system that statically
analyses the program, and inserts type checking assertions that preempt (i.e., force the
termination of) the program execution as soon as a type error becomes inevitable. In
contrast, under the existing dynamic, gradual [18,19] or soft [7] typing systems, these
errors are only caught at the point that a value of an incorrect type is used. In the
example, preemptive type checking finds both errors and presents the same error traces
as shown above. Moreover, it inserts a type error assertion at the beginning of the main
function that prevents the program from executing at all, since all program executions
will lead to a type error:

def main():
raise TypeError(’Type mismatch at lines 15, 17: expected Number, found str’)
...

Now we assume that the user “fixes” this bug and manually inserts explicit type casts
into the main function:

def main():
global initial
if len(argv)<2:

initial=abs(int(input(’enter initial value: ’)))
else:

initial=abs(int(argv[1]))
print(’outcome:’,compute())

However, when this program is run without preemptive type checking, the program will,
depending on the input, either raise a type error or work as expected, for example:

Preemptive Type Checking in Dynamically Typed Languages 197

$ python foo.py
enter initial value: 3
enter final value: 3
outcome: 6

$ python foo.py
enter initial value: 2
enter final value: 3
...
TypeError: unsupported operand type(s) for +: ’NoneType’ and ’int’

As we can see, the manual debugging process is time consuming, and relies on the
right combination of inputs to find the type errors. With preemptive type checking we
can minimise this effort and find and correct type errors much quicker. Our analysis
statically infers that x1 and x2 are either of type NoneType or integers, depending
on the control flow taken by the program. It also concludes that x1 and x2 need to be
integers for the program not to raise type errors:

Failure 1 - partial Traceback:
File "foo.py", line 18, in main
File "foo.py", line 6, in compute

Variable x1 expected Number but found NoneType

Failure 2 - partial Traceback:
File "foo.py", line 18, in main
File "foo.py", line 10, in compute
File "foo.py", line 6, in compute

Variable x1 expected Number but found NoneType

Failure 3 - partial Traceback:
File "foo.py", line 18, in main
File "foo.py", line 10, in compute
File "foo.py", line 10, in compute
File "foo.py", line 6, in compute

Variable x1 expected Number but found NoneType

Note that it is difficult and expensive to determine the possible types of x1 and x2. For
example, using data flow analysis techniques, the fact that x1 can be an integer is only
discovered on a path that inlines function compute three times. We thus introduce an
effective technique that uses trails to perform a flow sensitive type inference.

Preemptive type checking also transforms the compute function so that the type
errors are preempted (see Fig. 2). The inserted assertions contain all details to identify
the source of the type error, in particular the variable causing the type error, the location
where the type error would be raised and the present type there. Hence, the user can
correct the program with minimal debugging. Note that the assertions cannot be inserted
any earlier (i.e., before the if-statement) because there are possible control flow paths
that do not raise type errors.

Preemptive type checking identifies potential type errors in advance through a flow-
sensitive static analysis. It computes, for every variable and every program point, an
over-approximation of the types of the values that have last been assigned to a variable
(its “present types”) as well as the types with which it is next used in any reachable
program point (its “future use types”). If the future use types are not subsumed by the
present types, the further program execution may raise a type error, and a correspond-
ing narrowing assertion is inserted; if future use types and present types are disjoint, the

198 N. Grech, J. Rathke, and B. Fischer

def compute(x1=None,x2=None,x3=None):
global initial
if initial%5==0:

if not isinstance(x1, Number): # start inserted type check
raise TypeError(...)

if not isinstance(x2, Number):
raise TypeError(...) # end inserted type check

fin=int(input(’enter final value: ’))
return x1+x2+x3+fin

else:
initial-=1
return compute(x2,x3,initial)

Fig. 2. Transformed version of the compute function

further program execution will raise a type error, and a corresponding type error asser-
tion is inserted. We prove that the assertions are inserted in optimal locations and thus
preempt type errors earlier than dynamic typing, gradual typing [18,19], and soft typing
[7]. We further show that these assertions do not change the semantics of programs that
do not raise type errors. We proceed by formalising the type system and corresponding
bytecode level type inference. Although the theory is presented for μPython, a dynam-
ically typed Python-like core language, the techniques presented are applicable for any
similar dynamically typed language such as Ruby or JavaScript, or indeed larger subsets
of Python as in our implementation. Finally, we describe an implementation of preemp-
tive type checking, including assertion insertion, for a subset of Python bytecodes, and
evaluate it on a some benchmarks.

2 The µPython Language

In this section we define μPython as a dynamically typed core language modelled on
Python. It is a bytecode based language with dynamically typed variables and dynam-
ically bound functions. Although small, the language is still sufficiently expressive to
require a rich static type analysis.

High-Level Syntax. We present the high-level syntax of μPython in Fig. 3 for illus-
trative purposes only, as our type analysis is exclusively performed at the bytecode
level. The base types of the language are standard except perhaps for the types Un of
uninitialised variables and Fn of functions. μPython supports function definitions, con-
ditional statements, assignments, and while loops. In μPython, expressions are either
function calls, constants, or variables. Valid expressions are also valid statements. There
are three built-in functions. isInst is a reflection operator to check the dynamic type of an
expression, and always returns a boolean. intOp and strOp represent prime integer and
string operations, which implicitly raise a type error if their argument is of the wrong
type. Note that conditional statements and function calls will also implicitly raise a type
error when their guard or function expressions do not evaluate to boolean or function
types respectively. This contrasts with the raise operation that will immediately raise an
explicit exception error to terminate execution.

Preemptive Type Checking in Dynamically Typed Languages 199

Statements: Expressions:
s ::= def f(x) : s (function definition) e ::= x (variable)

| return e (function return) | c (constant)
| e (expression) | e(e) (function application)
| pass (empty statement) | intOp(e) (prime integer function)
| raise (exception) | strOp(e) (prime string function)
| x = e (assignment) | isInst(e, τ) (instance check)
| if e : s else : s (conditional)
| while e : s (loop) Types: τ ::= Int | Str | Bool | Un | Fn
| s; s (sequence) Constants: c ::= n | str | true | false

Fig. 3. Syntax of the μPython language

We have a single namespace V that comprises both variable and function names and
use the metavariables x, y (respectively f , g) to denote names that are intended to rep-
resent variables (respectively functions). In μPython, all variables have global scope.
Function definitions are semantically just assignments of anonymous, single argument
functions to variable names. Functions can be redefined at any point and within any con-
trol flow structure or scope. μPython supports higher order functions, where functions
are first class citizens.

Bytecode. Our type analysis is defined on the μPython bytecode. This is based on a
simplified machine model consisting of a store (for mapping variables to constants), an
integer-valued program counter and a single accumulator acc. The full Python VM is a
stack based machine and for presentation purposes we replace the evaluation stack with
an accumulator acc. Our implementation of preemptive type checking supports full
evaluation stacks. We use the metavariables u, v to range over names including acc.
Similar to the high-level syntax, we choose a subset of actual Python bytecodes, albeit
with minor modifications, sufficient to represent the challenges involved with static type
analysis in a dynamically typed language. We reuse the namespace V for variable and
function names but, in order to model functions, we extend the set of constants to now
include constants of type Fn made of finite sequences of bytecode instructions. For
technical convenience we also add a constant U of type Un.

instr ::= LC c (load constant) | JP n (unconditional jump) | intOp
| LG x (load global) | JIF n (jump if false) | strOp
| SG x (store global) | CF f (call function) | isInst τ

| RET (return from call) | raise

Fig. 4. The μPython bytecodes

The actual bytecodes we use are given in Fig. 4. Loading places constant values in
the accumulator, storing moves a constant to store from the accumulator. We assume
well-formed bytecode where jumps only refer to actual program locations and every
program has a RET-instruction at its final location. Note that JIF consumes the ac-
cumulator value as part of its test. The instructions intOp, strOp and raise echo the

200 N. Grech, J. Rathke, and B. Fischer

〈Σ, ε〉 → 〈ΣI , 〈M, 0〉 ::ε〉
〈Σ, 〈P, pc〉 ::S〉 → End if Ppc = RET, S = ε
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ,S〉 if Ppc = RET, S �= ε
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ ⊕ (acc �→ c), 〈P, pc + 1〉 ::S〉 if Ppc = LC c
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ ⊕ (acc �→ Σ(x)), 〈P, pc + 1〉 ::S〉 if Ppc = LG x
〈Σ, 〈P, pc〉 ::S〉 → if Ppc = SG x

〈Σ ⊕ (x �→ Σ(acc))⊕ (acc �→ U), 〈P, pc + 1〉 ::S〉
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ, 〈P, pc′〉 ::S〉 if Ppc = JP pc′

〈Σ, 〈P, pc〉 ::S〉 → 〈Σ ⊕ (acc �→ U), 〈P, n〉 ::S〉 if Ppc = JIF n,Σ(acc) = false
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ ⊕ (acc �→ U), 〈P, pc + 1〉 ::S〉 if Ppc = JIF n,Σ(acc) = true
〈Σ, 〈P, pc〉 ::S〉 → TypeError if Ppc = JIF n,¬Σ(acc) : Bool
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ, 〈P ′, 0〉 ::〈P, pc + 1〉 ::S〉 if Ppc = CF f,Σ(f) = P ′

〈Σ, 〈P, pc〉 ::S〉 → TypeError if Ppc = CF f,¬Σ(f) : Fn
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ ⊕ (acc �→ U), 〈P, pc + 1〉 ::S〉 if Ppc = intOp, Σ(acc) : Int
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ ⊕ (acc �→ U), 〈P, pc + 1〉 ::S〉 if Ppc = strOp, Σ(acc) : Str
〈Σ, 〈P, pc〉 ::S〉 → TypeError if Ppc = intOp,¬Σ(acc) : Int
〈Σ, 〈P, pc〉 ::S〉 → TypeError if Ppc = strOp,¬Σ(acc) : Str
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ ⊕ (acc �→ true), 〈P, pc + 1〉 ::S〉 if Ppc = isInst τ,Σ(acc) : τ
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ ⊕ (acc �→ false), 〈P, pc + 1〉 ::S〉 if Ppc = isInst τ,¬Σ(acc) : τ
〈Σ, 〈P, pc〉 ::S〉 → Exn if Ppc = raise

Fig. 5. Semantics of the μPython Bytecode

corresponding high-level expressions of the same names and isInst writes a boolean
into the accumulator depending on whether it contains a value of the given type. The
CF f instruction is of interest: to execute this the machine finds the sequence of instruc-
tions P ′ mapped from f in the store and pushes this program on to the call stack with
program counter 0.

Reduction Semantics. We formalise this semantics by the rules for single execution
steps of the abstract machine shown in Fig. 5. The states of the machine, State→, are
of the form 〈Σ,S〉 (where the environment Σ is a mapping from names, including acc,
to constants and S is a call stack of 〈program, program counter〉 pairs) or one of the
termination states TypeError, Exn, or End. We assume that the machine begins in state
〈Σ, ε〉. The step applicable at this point loads 〈M, 0〉 :: ε onto the call stack, where M
is the initial, or main, program. This step also sets the store to ΣI , an initial store that
contains mappings for built-ins and that maps all other names to U. We write Pn to refer
to the bytecode instruction at location n in program P . We write Σ(u) to denote lookup
in Σ and Σ ⊕ (u �→ c) to denote the environment Σ updated with the mapping u �→ c.
We also write Σ(u) : τ whenever Σ maps u to a constant of principal type τ .

3 Type Inference for µPython

A key characteristic of our dynamically typed core language is that the types of vari-
ables may change during execution. Therefore, to determine whether a type error may
occur we need to establish, for any given point of execution, two pieces of information:
the type a variable actually has and the type a variable may be used as in the future.

Preemptive Type Checking in Dynamically Typed Languages 201

We call these the present and future use types. To establish the former we perform a
traditional forwards analysis over the execution points of the program; the present type
of a variable depends on the instructions that have previously been executed. Obviously
the precise present runtime type of a variable cannot be statically determined so our
analysis uses an over-approximation of this. In order to represent the different type pos-
sibilities for a given variable, we make use of the familiar concept of union types. These
come equipped with a natural subtyping order. We extend the grammar of types to be

τ ::= Int | Str | Bool | Un | Fn | ⊥ | � | τ 	 τ

and define the subtyping order <: inductively

τ <: τ

τ <: τ ′ τ ′ <: τ ′′

τ <: τ ′′ ⊥ <: τ τ <: �
τ <: τ ′

τ <: τ ′ 	 τ ′′
τ <: τ ′′

τ <: τ ′ 	 τ ′′
τ <: τ ′′ τ ′ <: τ ′′

τ 	 τ ′ <: τ ′′

Dual to the analysis of present types we establish the future use type using a backwards
analysis so that the future use type depends on the next instructions that will be exe-
cuted. At any given program execution point we will check that the present and future
use types are compatible, by which we simply mean that the present type is a subtype
of the future use type.

3.1 Execution Points and Trails

A naive idea of a program execution point might be a simple code location but because
variables can change type during execution, the entire call stack is important in deter-
mining their current types. In principle, program execution points must therefore be
full call stacks. The control flow graph (CFG) of a μPython program is then a relation
S → S′ between call stacks. This is unfortunate because, even for finite programs, the
CFG of all possible program execution points could then be infinite. This has drastic
consequences for a static analysis.

We address this issue by over-approximating the CFG via the simple means of trun-
cating call stacks. Specifically, given a call stack S, and an integer N ≥ 1, we write
�S�N to mean the equivalence class of all call stacks whose prefix of length N is the
same as that of the stack S. We typically omit N as this is fixed throughout. We refer
to these equivalence classes as truncated execution points and it is clear that, for each
program, they form a finite, truncated CFG as follows:

�S� → �S′� if and only if S0 → S′0 for some S0 ∈ �S�, S′0 ∈ �S′�

We will use a shorthand notation in the remainder by writing s to mean �S�, similarly
for s′ for �S′�. We will also make extensive use of the following two functions: given
a truncated execution point s we write prev(s) for the set of nodes from which s can
be reached in the truncated CFG of the program. Similarly, next(s) denotes the set of
nodes which can be reached from s.

202 N. Grech, J. Rathke, and B. Fischer

At the heart of our analysis is the forwards/backwards traversal of the truncated
CFG using the prev(s) and next(s) functions in order to find the present and future
use types of variables. Of course, these CFGs may contain cycles so we must take
care to terminate our analysis in cases where we have reached a point that we have
previously visited. This motivates the following: the type inferencer is expressed using
two independent inductively defined relations written

〈s, T 〉 �p u : τ and 〈s, T 〉 �f u : τ

where s is a truncated execution point and T is a trail. A trail is a set of pairs 〈s, u〉
of truncated execution points and variables. They represent the previously visited exe-
cution points (together with the variables that triggered the visit) and are used to en-
sure termination of the inferencer, as explained in the next section. The judgement
〈s, T∅〉 �p u : τ (where T∅ is the empty trail) denotes that u will have type τ after
the current instruction has been executed. The judgement 〈s, T∅〉 �f u : τ denotes that
the variable u is required to have type τ in order to execute the instructions from the
current instruction onwards without raising a TypeError.

3.2 Type Inference Rules

The type inferencer is expressed as inference rules, given in Fig. 6 and Fig. 7. The
leaf rules in Fig. 6 for inferring �p account for situations in which the present type
is fully determined by the current instruction. For example, after loading a constant
(Rule pLC) the accumulator is known to have the type of the constant that has just been
loaded. The non-leaf rules all follow a shared pattern: the types of relevant variables
in each previous state are calculated and the present type of a specific variable is the
union across the types from each previous state. The relevant variables are instruction
dependent. For example, in Rule pSG1 for the instruction SG x the type of x depends
on the type of acc in the previous states.

Again, for the rules for �f in Fig. 7 we have leaf rules and non-leaf rules. Many of the
leaf rules assign an f -type of � to a variable. This follows in cases where that variable
is just about to be overwritten (Rules fSET/SG1). Otherwise, the immediate uses are
recorded in the type (Rules fJIF/STR/INT). Two interesting rules are fLG1 and fCF1.
In these a variable is used but its contents remain intact so there may be future uses
also. We define a meet operation on types, written as�· , in the following rules (applied
in top-down order):

τ�· (τ1 	 τ2) = (τ �· τ1) 	 (τ �· τ2)
(τ1 	 τ2)�· τ = (τ1�· τ) 	 (τ2�· τ)
τ �· � = τ ��· τ = τ
τ �· τ = τ τ1�· τ2 = ⊥

It is worth noting that the trail sets T are finitely bounded. This is due to the fact that
call stacks are truncated to a fixed depth and that, for a given program, there are finitely
many code locations and finitely many variables. For a given program, we write TU
to denote the maximum trail containing all truncated execution point/variable pairs.
In fact, by virtue of the fact that trail sizes strictly decrease in non-leaf rules, that all
rules have finitely many hypotheses, and by König’s Lemma, it is guaranteed that the

Preemptive Type Checking in Dynamically Typed Languages 203

Leaf rules:

ΣI(u) : τ

〈ε, T 〉 �p u : τ
pINIT

〈s, u〉 ∈ T
〈s, T 〉 �p u : ⊥pTRAIL

〈s, u〉 �∈ T Ppc = raise

〈s, T 〉 �p u : ⊥ pRAISE

〈s, acc〉 �∈ T Ppc = LC c c : τ

〈s, T 〉 �p acc : τ
pLC

〈s, acc〉 �∈ T Ppc = isInst τ

〈s, T 〉 �p acc : Bool
pINST

〈s, acc〉 �∈ T Ppc ∈ {SG x,JIF n, strOp, intOp}
〈s, T 〉 �p acc : Un

pUSE

Non-leaf rules:

〈s, x〉 �∈ T Ppc = SG x
〈si, T ∪ {〈s, x〉}〉 �p acc : τi

〈s,T 〉 �p x :
⊔

τi
pSG1

〈s,acc〉 �∈ T Ppc = LG x
〈si, T ∪ {〈s, acc〉}〉 �p x : τi

〈s, T 〉 �p acc :
⊔

τi
pLG1

〈s, y〉 �∈ T Ppc = SG x x �= y
〈si, T ∪ {〈s, y〉}〉 �p y : τi

〈s, T 〉 �p y :
⊔

τi
pSG2

〈s, y〉 �∈ T Ppc = LG x
〈si, T ∪ {〈s, y〉}〉 �p y : τi

〈s, T 〉 �p y :
⊔

τi
pLG2

〈s, u〉 �∈ T
Ppc ∈ {RET, JP pc′,CF f}
〈si, T ∪ {〈s, u〉}〉 �p u : τi

〈s,T 〉 �p u :
⊔

τi
pRET/JP/CF

〈s, x〉 �∈ T
Ppc ∈ {LC c, JIF pc′, strOp, intOp, isInst τ}

〈si, T ∪ {〈s, x〉}〉 �p x : τi
〈s, T 〉 �p x :

⊔
τi

p*

Fig. 6. Inference rules for the �p judgement. Unless stated otherwise, s is assumed to be of the
form 〈P, pc〉 :: . . . and si ranges over prev(s).

application of the type inference rules terminates and thus, for any s, u, the judgements
〈s, T∅〉 �p u : τ and 〈s, T∅〉 �f u : τ ′ hold for some τ, τ ′.

4 Correctness

We now show that the type inference rules are correct. We give proof sketches for the
main results. Full proofs can be found in [11]. The notion of soundness for p-types
should be clear. Given a derivation 〈s, T∅〉 �p u : τ we expect that the actual runtime
type of the constant stored at u in the Σ store after the current instruction in s has been
executed to be a subtype of τ . This is formally expressed in the next theorem.

Theorem 1 (Soundness of p-types). Suppose

〈Σ, ε〉 →∗ 〈Σ,S〉 → 〈Σ′, S′〉 and 〈�S�, T∅〉 �p x : τp

and suppose τr is such that Σ′(x) : τr. Then τr <: τp.

Proof. (Sketch) The proof proceeds by induction on the number of reduction steps
taken to reach 〈Σ,S〉. For the base case we know that 〈Σ,S〉 is of the form 〈Σ, ε〉

204 N. Grech, J. Rathke, and B. Fischer

Leaf rules:

〈ε, T 〉 �f u : � fINIT
Ppc = RET

〈〈P, pc〉 ::ε,T 〉 �f u : � fEND
Ppc = SG x 〈s, x〉 �∈ T

〈s,T 〉 �f x : � fSG1

〈s, x〉 ∈ T
〈s, T 〉 �f u : ⊥ fTRAIL

Ppc = raise 〈s, u〉 �∈ T
〈s,T 〉 �f u : � fRAISE

Ppc ∈ {LC c, LG x, isInst τ}
〈s,acc〉 �∈ T

〈s, T 〉 �f acc : � fSET

Ppc = JIF pc′

〈s, acc〉 �∈ T
〈s, T 〉 �f acc : Bool

fJIF

Ppc = strOp
〈s, acc〉 �∈ T

〈s, T 〉 �f acc : Str
fSTR

Ppc = intOp
〈s,acc〉 �∈ T

〈s, T 〉 �f acc : Int
fINT

Non-leaf rules:

〈s, x〉 �∈ T Ppc = LG x
〈si, T ∪ {〈s, x〉}〉 �f acc : υi

〈si, T ∪ {〈s, x〉}〉 �f x : νi

〈s, T 〉 �f x :
⊔
(υi· νi)

fLG1

s = 〈P, pc〉 ::〈P ′, n〉 :: ... 〈s, u〉 �∈ T
Ppc = RET 〈si, T ∪ {〈s, u〉}〉 �f u : τi

〈s, T 〉 �f u :
⊔

τi
fRET

〈s, acc〉 �∈ T Ppc = SG x
〈si, T ∪ {〈s, acc〉}〉 �f x : τi

〈s, T 〉 �f acc :
⊔

τi
fSG2

〈s, y〉 �∈ T Ppc ∈ {LG x,SG x}
x �= y 〈si, T ∪ {〈s, y〉}〉 �f y : τi

〈s, T 〉 �f y :
⊔

τi
fLG2/SG3

〈s, f〉 �∈ T Ppc = CF f
〈si, T ∪ {〈s, f〉}〉 �f f : τi
〈s, T 〉 �f f :

⊔
(τi· Fn)

fCF1

〈s, u〉 �∈ T Ppc = CF f u �= f
〈si, T ∪ {〈s, u〉}〉 �f u : τi

〈s,T 〉 �f u :
⊔

τi
fCF2

〈s, u〉 �∈ T Ppc = JP n
〈si, T ∪ {〈s, u〉}〉 �f u : τi

〈s, T 〉 �f u :
⊔

τi
fJP

Ppc ∈ {LC c, JIF n, intOp, strOp, isInst τ}
〈s, x〉 �∈ T 〈si, T ∪ {〈s, x〉}〉 �f x : τi

〈s,T 〉 �f x :
⊔

τi
f*

Fig. 7. Inference rules for the �f judgement. Unless stated otherwise, s is assumed to be of the
form 〈P, pc〉 :: . . . and si ranges over prev(s).

and that there is a unique reduction step from this state whose target has store ΣI

(cf. Fig. 5). The type rule pINIT then guarantees the desired result. The inductive case
requires a case analysis on the last type rule used to derive type τp. The leaf rules all
follow from the definition of reduction but the non-leaf rules require use of the induc-
tive hypothesis along with the following lemma that relates the types of variables as the
trail sets are increased. �	

Lemma 1 (Bounding). For all u, v, s, s′ and all T ′ ⊆ T such that 〈s, T ′〉 �p u : τ ′

and 〈s′, T ∪ {〈s, u〉}〉 �p v : τ ′′ then τ <: τ ′ 	 τ ′′ whenever 〈s′, T 〉 �p v : τ .

Intuitively, the lemma states that the most type information that can be gained for u
in the absence of the trail assumption 〈s, v〉 is what can be established for u, with the
assumption in place, along with any possible contribution to the type from v itself.

Preemptive Type Checking in Dynamically Typed Languages 205

The correctness criteria for f -types are more subtle. The f -types describe constraints
on future uses of a variable and we will use these constraints to report type errors pre-
emptively by raising type error exceptions. So correctness in this case must mean that,
supposing we execute the program in a preemptive type checked semantics, if we raise
a type error exception then the same program running in the non-preemptive semantics
would continue executing to reach an actual type error. In addition, we must also al-
low for the possibility that the program in the non-preemptive semantics could diverge
before reaching the detected future error.

In order to formalise the above, we will need to define the preemptive type checked
semantics and a predicate on states that holds whenever a future divergence or type
error is guaranteed. We begin by defining the diverge-error predicate coinductively:

Definition 1. A relation R⇑ on State→ is called a diverge-error relation if whenever
〈Σ,S〉 ∈ R⇑ then

〈Σ,S〉 → 〈Σ′, S′〉 ∧ 〈Σ′, S′〉 ∈ R⇑ or 〈Σ,S〉 → TypeError.

Let ⇑ be the largest diverge-error relation.

It follows that a state in a diverge-error relation cannot reach the state End or Exn.

Definition 2. The state compatibility predicate SC holds at 〈Σ,S〉 if for all variables
u such that 〈s, T∅〉 �f u : τf and Σ(u) : τr then τr <: τf , where s = �S�.

The next proposition demonstrates that this simple predicate would already by sufficient
for preemptive type checking. However, we will see in the next section that SC may be
refined to make better use of static type information.

Proposition 1 (Soundness of f -types). If 〈Σ,S〉 �∈ SC then 〈Σ,S〉 ∈ ⇑.

Proof. (Sketch) We use coinduction here by proving that the complement of SC is itself
a diverge-error relation. To do this we suppose that 〈Σ,S〉 �∈ SC to see that there is
some u for which Σ(u) : τr, and 〈s, T∅〉 �f u : τf and τr �<: τf . We perform a case
analysis on the last rule used to derive the type τf and see that, for all applicable leaf
rules, then state 〈Σ,S〉 reduces to TypeError. For all non-leaf rules, a lemma analogous
to Lemma 1 is used to show that where 〈Σ,S〉 reduces to some 〈Σ′, S′〉 then 〈Σ′, S′〉 �∈
SC as required. �	

4.1 Checked µPython Semantics

The naive runtime type check SC above simply checks whether the current runtime
type of a variable is a subtype of the statically inferred f -type. However, we have also
statically calculated the p-types as a sound approximation of the runtime types and we
can leverage this to obtain a type check that can be partially evaluated statically. This
predicate is defined on edges in the truncated CFG.

Definition 3. The edge compatibility predicate EC holds at 〈s, s′, Σ′〉 if for all vari-
ables u, such that

〈s, T∅〉 �f u : τf 〈s′, T∅〉 �f u : τ ′f 〈s, T∅〉 �p u : τp Σ′(u) : τ ′r

206 N. Grech, J. Rathke, and B. Fischer

then
τf = τ ′f or τp <: τ ′f or τ ′r <: τp�· τ ′f

Essentially this says that, if the program moves from a state s to a state s′ then the f -
types report no error if there is no change in the future use constraints, if the statically
approximated runtime type is a subtype of future uses, or if the actual new runtime type
of a variable is within the future use set (modulated by the present type). Clearly only the
latter of these requires the inspection of the runtime types and even then, where the meet
τp�· τ ′f is ⊥, we know statically that the predicate must fail as there are no constants of
type ⊥. The predicate EC is used extensively in our checked μPython semantics, as is
the following predicate that allows type incompatibilities to be propagated backwards
through the CFG.

Definition 4. The fail edge predicate FE holds at 〈s, s′〉 if s ∈ prev(s′) and either
∀Σ′ · 〈s, s′, Σ′〉 �∈ EC ′ or {〈s′, s′′〉 | s′′ ∈ next(s′)} ⊆ FE .

Definition 5. The checked semantics is defined as a binary relation � on the set of
states, State� comprised of 〈Σ,S〉 states, End, and Exn such that:

〈Σ,S〉 � End if〈Σ,S〉 → End
〈Σ,S〉 � Exn if〈Σ,S〉 → Exn
〈Σ,S〉 � Exn if〈Σ,S〉 → 〈Σ′, S′〉 ∧ 〈s, s′, Σ′〉 �∈ EC
〈Σ,S〉 � Exn if〈Σ,S〉 → 〈Σ′, S′〉 ∧ 〈s, s′〉 ∈ FE
〈Σ,S〉 � 〈Σ′, S′〉 if〈Σ,S〉 → 〈Σ′, S′〉 otherwise

Definition 6. A relation R≤ on State→ × State�, which relates only identical non-
terminating states (i.e., if 〈Σ,S〉R≤〈Σ1, S1〉 then Σ = Σ1 and S = S1) is called an
error-preserving simulation if the following holds:

· 〈Σ,S〉 �→ TypeError
· If 〈Σ,S〉 → End then 〈Σ,S〉 � End.
· If 〈Σ,S〉 → Exn then 〈Σ,S〉 � Exn.
· If 〈Σ,S〉 → 〈Σ′, S′〉 then either

· 〈Σ,S〉 � 〈Σ′, S′〉 ∧ 〈Σ′, S′〉 ∈ R≤ or
· 〈Σ,S〉 � Exn ∧ 〈Σ′, S′〉 ∈ ⇑

Let � be the largest error-preserving simulation.

Theorem 2. Let RSC be defined as

{〈Σ,S〉, 〈Σ,S〉 | 〈ΣI , 〈M, 0〉 ::ε〉 →∗ 〈Σ,S〉 ∧ 〈Σ,S〉 ∈ SC}

Then RSC is an error-preserving simulation and hence RSC ⊆�.

Proof. (Sketch) It is easy to see that states 〈Σ,S〉 in RSC preserve termination steps.
To show that 〈Σ,S〉 �→ TypeError we use proof by contradiction by assuming a type
error and analyse all possible reduction steps that could cause this. In each case the
inferred types must contradict the hypothesis that 〈Σ,S〉 ∈ SC . To show that transi-
tions are preserved by matching checked transitions or exceptions that guarantee future

Preemptive Type Checking in Dynamically Typed Languages 207

divergence we consider the possible derivations of the checked semantics. In case that
〈s, s′, Σ′〉 �∈ EC we note τ ′r �<: τp�· τ ′f and thus, using Theorem 1 and Proposition 1,
we have 〈Σ′, S′〉 ∈ ⇑. In case 〈s, s′, Σ′〉 ∈ EC we analyse each type rule to show that
〈Σ′, S′〉 ∈ SC . �	

Corollary 1. Suppose 〈ΣI , 〈M, 0〉 ::ε〉 �∗N ��. Then N is either End or Exn.

Proof. We note immediately that 〈Σ, ε〉 ∈ SC holds by virtue of rule fINIT of Fig. 7.
Therefore we have 〈Σ, ε〉RSC 〈Σ, ε〉 and hence by the above theorem we have 〈Σ, ε〉 �
〈Σ, ε〉. Now, suppose for contradiction that N is neither End or Exn. Then we must
have N being some 〈Σ,S〉 such that 〈Σ,S〉 � 〈Σ,S〉. This tells us that 〈Σ,S〉 �→
TypeError and, by the definition of → we must have 〈Σ,S〉 → 〈Σ′, S′〉 for some
〈Σ′, S′〉. This means that N � N ′ for some N ′ also, contradicting maximality. �	

4.2 Optimality

Now that we have shown the correctness of our type inferencer, we would like to estab-
lish that our type inference system is optimal in the sense that the checked semantics
report an Exn as soon as the control flow reaches a point where all possible further
execution steps in the unchecked semantics lead to state TypeError. Since our analysis
considers variables individually, we can only prove that our inference system satisfies a
milder form of optimality in general, along execution sequences in which there are no
branches of control flow.

Definition 7. A reduction step 〈Σ,S〉 → 〈Σ′, S′〉 is called linear if next(s) = {s′}. A
sequence 〈Σ,S〉 →∗ 〈Σ′, S′〉 is called linear if each step in the sequence is linear.

Theorem 3 (Linear optimality). Suppose 〈Σ, ε〉 �∗〈Σ,S〉 such that there is a linear
reduction sequence 〈Σ,S〉 →∗TypeError. Then 〈Σ,S〉 � Exn.

Proof. (Sketch) This is proved by assuming for contradiction that 〈Σ,S〉 � 〈Σ′, S′〉
and 〈Σ′, S′〉 � Exn. We consider the cases that derive the latter step and can quickly
rule out 〈Σ′, S′〉 being the source of a fail edge because the assumption of linearity
guarantees that 〈s, s′, Σ′〉 ∈ FE in this case, which contradicts our assumption. There-
fore we must have 〈s′, s′′, Σ′′〉 �∈ EC . We then consider the type rules used to derive
the f -type in state 〈Σ′, S′〉 and use these to derive a contradiction. �	

Linear optimality is not as restrictive as it might seem: the fail edge predicate FE prop-
agates guaranteed type errors backwards even over control flow splits.

4.3 Type Checks Insertion

We now describe an algorithm that transforms bytecode programs by inserting type
checks and explicit errors in such a way that the transformed program implements the
checked semantics. An important point to note, however, is that the checked semantics
is defined in terms of edges of the truncated CFG and that nodes in this graph do not
correspond uniquely to program locations. That is, each program location may occur

208 N. Grech, J. Rathke, and B. Fischer

P ′ ←− ε
for pc ←− 0.. size(P)− 1:

s←− 	〈P, pc〉 ::s�N
for s′ ∈ next(s):

if Ppc = JIF pc′ ∧ s′ = 〈P, pc′〉 :: ...∧ 〈s, s′〉 ∈ FE: extend(P ′, failIfFalse)
if Ppc = JIF pc′ ∧ s′ = 〈P, pc + 1〉 :: ...∧ 〈s, s′〉 ∈ FE: extend(P ′, failIfTrue)
if 〈ε, s〉 ∈ FE: extend(P ′, raise)
if Ppc �∈ {JIF pc′,CF f, JP pc′}: extend(P ′, Ppc)
for x ∈ V:

let 〈s, T∅〉 �p x : τp 〈s, T∅〉 �f x : τf 〈s′, T∅〉 �f x : τ ′
f

if ¬(τf = τ ′
f ∨ τp <: τ ′

f):

if Ppc = JIF pc′ ∧ s′ = 〈P, pc′〉 :: ...: extend(P ′, checkIfFalse(x, τp�· τ ′
f))

if Ppc = JIF pc′ ∧ s′ = 〈P, pc + 1〉 :: ...: extend(P ′, checkIfTrue(x, τp�· τ ′
f))

if Ppc �= JIF pc′: extend(P ′, check(x, τp�· τ ′
f))

if Ppc = CF f:
〈Q, 0〉 :: ...←− s′

extend(P ′, call(specialise(Q, s)))

if Ppc = JIF pc′ ∨ Ppc = JP pc′: extend(P ′, Ppc)

Fig. 8. Algorithm for inserting type checks in μPython programs, expressed as a function
specialise(P, s) that returns an updated program P ′

many times as the currently executing instruction in different nodes of the graph. For
this reason, the bytecode transformation takes as a parameter the particular truncated
call stack against which we are inserting checks. Where the same program is reached
with a different call stack, a specialised copy of the program bytecode is created with
the relevant assertions for that different call stack inserted. Of course, call sites must be
updated to call these specialised programs also.

The algorithm (see Fig. 8) iterates over every instruction of the program, extending
the call stack with this instruction as the current one. It then considers edges in the
truncated CFG from this point in order to implement the FE and EC predicates. The
algorithm uses bytecode macros that are underlined in the algorithm and implemented
as a sequence of μPython bytecode instructions. Procedure extend takes a program and
a list of instructions and appends the instructions to the end of the given program.

5 Implementation

We have implemented the system as a Python library for a subset of Python 3.3. We
suppport both local and global variables, which helps make the system scalable as most
variables in typical programs are local. Our implementation handles 40 bytecodes in to-
tal. In particular, we support extra bytecodes for arithmetic, more control structures such
as while-loops, local variables, some built-in data structures and polyadic functions.

Architecture. In Python the load path for individual modules can sometimes only be
resolved at runtime, and the bytecode for a module that requires type checking may
not be available statically. We therefore postpone our analysis until the program has
stabilised. Hence, during initialisation, the full power of Python can be used, including
metaclasses, eval and dynamic code loading. The entry point to the type checking
mechanism is the analysis in the class Analyser. This takes a callable object

Preemptive Type Checking in Dynamically Typed Languages 209

such as the main function, and an integer truncation level N . By starting the analysis
once the environment has stabilised, we obtain a more accurate type analysis.

Analysis. As our system is built upon a static control flow analysis, we need an im-
plementation for this. Our type inference and its correctness are independent of the
particular choice, as long as the analysis returns an over-approximation of the actual
control flow at runtime. Similarly, our implementation is parametric in the implementa-
tion of the control flow analysis. As a proof of concept, we use a simplified version of
next(.) and prev(.) in which we assume that all function definitions are declared once.

The Analyser first constructs the truncated CFG and then iterates over all nodes in
order to calculate the p and f -types for the accumulator. This triggers recursive compu-
tations for other variables. All runtime type errors arise due to an ill-typed accumulator
value and therefore, to just identify the type errors, the type of the accumulator is suffi-
cient. However, in order to preempt type errors, the types of all other variables that feed
into the computation are necessary as well. All type calculations are cached during the
iteration across the CFG so that p and f types for all necessary variables in all states
are established. An implementation of specialise as in Fig. 8 is then used to transform
the program so that it implements preemptive type checking. This is carried out on the
given callable object, such as main, and all other functions it may call. Then, calling
the specialised main activates the preemption to catch any runtime type errors.

The Analyser class can also statically issue messages explaining the potential type
failures in the given function. This includes partial stack traces with the expected type
errors. Along with the expected and actual types. This information is derived from our
internal representation of execution points and types.

Full Evaluation Stacks. The Python virtual machine is a stack based machine. The
evaluation stack serves as working memory and is read and manipulated by a large por-
tion of bytecode instructions. For example, load operations push a single element on
to the stack while store operations pop a single element from it. In general, bytecode
instructions may displace stack elements by a number of positions, which can be deter-
mined statically. Although the theory outlined above uses a single element evaluation
stack (i.e. the accumulator), the implementation already supports the full stack model.
We adjust the inference rules above to cater for a full stack machine simply by statically
calculating how much the stack is shifted for every instruction and factoring that in to
identify the particular variables that we need to analyse in the type inference rules.

6 Evaluation

We tested our implementation on a number of Python benchmarks and examples from
the Computer Language Benchmarks Game [2]. In order to run the benchmarks we
had to manually provide type information for external functions such as cout. Some
benchmarks in this suite have been ported from original code in statically typed lan-
guages and therefore type errors should be rare. One of the benchmarks that we anal-
ysed is mandelbrot, which plots the Mandelbrot set on a bitmap. This raises a type
error when this is run with certain parameters due to a tuple of bytes being used instead
of a byte string by function cout. With our tool, failure assertions are inserted at two

210 N. Grech, J. Rathke, and B. Fischer

different points, which preempt the type error. Warnings are also statically displayed,
which indicate the type errors.

The largest benchmark that we tested is meteor-contest, where the C++ ver-
sion of this is 500 lines of code. A number of type checks were inserted, especially
since some type information is lost, such as when heterogenous objects are placed into
lists and subsequently retrieved. When running this benchmark no type errors were en-
countered, with or witout preemptive type checking. A possible failure was however
statically inferred by our analyser in function findFreeCell:
45 def findFreeCell(board):
46 for y in range(height):
47 for x in range(width):
48 if board & (1 << (x + width*y)) == 0:
49 return x,y

We can see that if no free cells are found in a board, this function will not return any-
thing, so by default this would return None. In this case, a type error would occur as
None cannot be unpacked, like a tuple. The programmer is therefore assuming an in-
variant that asserts that a “free cell” will always be found in the “board”. The invariant
that the loop will never terminate without returning is explicitly inserted by our tool. If
this program is run using preemptive type checking, a preemptive type checking error
is raised as soon as the loop at line 47 exits.

Preemptive type checking can be successfully scaled to medium sized programs. For
example, the benchmark meteor-contest with a maximum execution point depth
of 4 yields a control flow graph with over 30k nodes. In this case, it took under half an
hour to analyse the program and 15 seconds to transform it on a standard workstation.
The same program however takes under ten seconds to analyse and transform when the
maximum execution point depth is set to 1. Optimality is still guaranteed in both cases,
however more error information can be presented to the user with a larger execution
point depth.

Preemptive type checking can be also particularly helpful for less experienced pro-
grammers and so we also tested our implementation on code in a question posed by a
Python beginner on stackoverflow.com.1 Our implementation statically produces warn-
ings that corroborate the answer given to this question by Python developers.

7 Related Work

Combinations of static and dynamic typing have been proposed, which enable stati-
cally typed code to interact with dynamically typed code. The initial work focused on
increasing the degree of dynamic typing in statically typed languages. Abadi et al. [3]
introduced the type Dyn to model finite disjoint unions or subclassing in object-oriented
languages. The use of dynamic types is constrained (values of type Dyn can only be
used in a typecase-construct) and therefore casting is made explicit. In Gradual typing
[18], type consistency � (a reflective, symmetric but non-transitive relation) is used to
relate Dyn with static types, and Dyn is statically consistent with any type. Gradual typ-
ing can support type inferance [19,24] and can be applied to object oriented languages

1 http://stackoverflow.com/questions/320827/
python-type-error-issue

http://stackoverflow.com/questions/320827/python-type-error-issue
http://stackoverflow.com/questions/320827/python-type-error-issue

Preemptive Type Checking in Dynamically Typed Languages 211

[24]. Intermediaries between Dyn and static types are introduced by Flanagan [9] (Hy-
brid types) and by Wrigstad [23] (like types). The type systems discussed here do not
perform any type error preemption.

As in preemptive type checking, soft typing [7] uses union types to approximate
static types in an untyped language and inserts type narrowers to prevent implicit type
error exceptions. However, the original work [7] did not handle assignments, so there
is no notion of preemption. Soft typing was extended to support Scheme [22] and to
handle assignments, but all occurrences of the assigned variable have to have the same
type, which makes it impossible to successfully typecheck even the simple example
from Fig. 1. Soft typing has also been applied to Python [15] and Erlang [13]. In the
latter, the author also bases the type system on a data flow analysis, but does not distin-
guish between p and f types. Bracha introduces the notion of pluggable type systems
[5]. Since preemptive type checking does not affect the semantics of μPython in runtime
executions that terminate without raising type errors (Section 4) and no type annotations
are required, our type system meets this definition.

We now look at static type inference mechanisms, which turn dynamically typed
languages into statically typed subsets. Strongtalk [6] is a subset of Smalltalk with
features such as polymorphic signatures, protocol based inheritance, generics and para-
metric polymorphism. This language also supports the typecase construct. This work
however does not define a formal type system or describe how omitted type annotations
are treated. Felleisen and Tobin-Hochstadt [21] propose the notion of occurrence typ-
ing for implementing a statically typed version of Scheme. A translation of the simple
example in Fig. 1 is statically rejected by this system. Similarly, statically typed subsets
of Python [4] and Ruby [10] have been proposed. These however do not catch all type
errors statically, and limit the expressiveness of the language by flagging false positives.
Recency types [20] deal with object initialisation patterns in JavaScript, where mem-
bers are assigned dynamically. The concept of a recency type is similar to the present
types in our work. Present types are however more sophisticated as these can change
throughout intraprocedural paths of control flow rather than blocks.

Lastly, we look at control flow analysis for dynamically typed languages. k-CFA [16]
is an algorithm to perform inter-procedural control flow analysis on Scheme by abstract
interpretation. Unfortunately, some variants of k-CFA are intractable [17].

8 Conclusions and Future Work

In this paper, we introduce a new method for type checking dynamically typed programs
that combines elements of both static and dynamic type checking. It is described as
preemptive type checking since the type checking happens much earlier than in dynamic
typing. Preemptive type checking tries to detect type errors as early as possible and
guarantees that any program that can run to completion under dynamic typing without
raising a type error will also work with preemptive type checking. We also evaluate an
implementation for a subset of Python.

In the future, we plan to add features such as classes and objects, possibly using
structural types [14]. This can be complemented with a control flow analysis algorithm
such as k-CFA [16]. We also intend to investigate how preemptive type checking can

212 N. Grech, J. Rathke, and B. Fischer

be applied to other popular dynamically typed languages such as JavaScript. Finally,
we intend to support metaprogramming by going back and forth between type checking
and runtime whenever a new part of the running program is generated.

References

1. Mars Climate Orbiter Mishap Investigation Board Phase I Report. NASA (1999)
2. The Computer Language Benchmarks Game,

http://shootout.alioth.debian.org/
3. Abadi, M., Cardelli, L., Pierce, B., Plotkin, G.: Dynamic typing in a statically typed language.

ACM Transactions on Programming Languages and Systems 13(2), 237–268 (1991)
4. Ancona, D., Ancona, M., Cuni, A., Matsakis, N.: RPython: A step towards reconciling dy-

namically and statically typed OO languages. In: DLS, pp. 53–64 (2007)
5. Bracha, G.: Pluggable type systems. Revival of Dynamic Languages (2004)
6. Bracha, G., Griswold, D.: Strongtalk: Typechecking Smalltalk in a production environment.

In: OOPSLA, pp. 215–230 (1993)
7. Cartwright, R., Fagan, M.: Soft typing. In: PLDI, pp. 278–292 (1991)
8. Findler, R., Felleisen, M.: Contracts for higher-order functions. In: ICFP, pp. 48–59 (2002)
9. Flanagan, C.: Hybrid type checking. In: POPL, pp. 245–256 (2006)

10. Furr, M., An, J., Foster, J., Hicks, M.: Static type inference for Ruby. In: Symposium on
Applied Computing, pp. 1859–1866 (2009)

11. Grech, N.: Preemptive Type Checking in Dynamically Typed Languages. PhD thesis, Uni-
versity of Southampton (submitted)

12. Might, M., Smaragdakis, Y., Horn, D.: Resolving and Exploiting the k-CFA Paradox. In:
PLDI, pp. 305–315 (2010)

13. Nyström, S.: A soft-typing system for Erlang. In: Erlang Workshop, pp. 56–71 (2003)
14. Pierce, B.: Nominal and Structural Type Systems. In: Types and Programming Languages,

ch. 19, pp. 247–264 (2002)
15. Salib, M.: Starkiller: A Static Type Inferencer and Compiler for Python. Thesis, MIT (2004)
16. Shivers, O.: Control-flow analysis in Scheme. In: PLDI, pp. 164–174 (1988)
17. Shivers, O.: Higher-order control-flow analysis in retrospect: lessons learned, lessons aban-

doned. ACM SIGPLAN Notices 39(4), 257–269 (2004)
18. Siek, J., Taha, W.: Gradual typing for functional languages. In: Scheme and Functional Pro-

gramming Workshop (2006)
19. Siek, J., Vachharajani, M.: Gradual typing with unification-based inference. In: DLS (2008)
20. Heidegger, P., Thiemann, P.: Recency Types for Dynamically-Typed, Object-Based Lan-

guages. In: FOOL (2009)
21. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed scheme. In:

POPL, pp. 395–406 (2008)
22. Wright, A., Cartwright, R.: A practical soft type system for scheme. ACM Transactions on

Programming Languages and Systems 19, 87–152 (1997)
23. Wrigstad, T., Nardelli, F., Lebresne, S., Östlund, J., Vitek, J.: Integrating typed and untyped

code in a scripting language. In: POPL, pp. 377–388 (2010)
24. Rastogi, A., Chaudhuri, A., Hosmer, B.: The Ins and Outs of gradual type inference. In:

POPL, pp. 481–494 (2012)
25. TIOBE Programming Community Index (2013), www.tiobe.com

http://shootout.alioth.debian.org/
www.tiobe.com

	Preemptive Type Checkingin Dynamically Typed Languages
	1 Introduction
	2 TheμPython Language
	3 Type Inference for
	3.1 Execution Points and Trails
	3.2 Type Inference Rules

	4 Correctness
	4.1 Checked
	4.2 Optimality
	4.3 Type Checks Insertion

	5 Implementation
	6 Evaluation
	7 Related Work
	8 Conclusions and Future Work
	References

