
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Preemptive type checking in dynamically typed programs

by

Neville Grech

Thesis for the degree of Doctor of Philosophy

November 2013

mailto:nevillegrech at gmail dot com

 The research work disclosed in this publication is partially funded by the Strategic

 Educational Pathways Scholarship (Malta). This Scholarship is part-financed by the

 European Union – European Social Fund (ESF) under Operational Programme II –

 Cohesion Policy 2007-2013, “Empowering People for More Jobs and a Better Quality

 Of Life”.

 Operational Programme II – Cohesion Policy 2007-2013
 Empowering People for More Jobs and a Better Quality of
 Life
 Scholarship part-financed by the European Union

 European Social Fund (ESF)
 Co-financing rate: 85% EU Funds; 15%National Funds

 Investing in your future

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Doctor of Philosophy

PREEMPTIVE TYPE CHECKING IN DYNAMICALLY TYPED PROGRAMS

by Neville Grech

With the rise of languages such as JavaScript, dynamically typed languages have gained a strong

foothold in the programming language landscape. These languages are very well suited for rapid

prototyping and for use with agile programming methodologies. However, programmers would

benefit from the ability to detect type errors in their code early, without imposing unnecessary

restrictions on their programs.

Here we describe a new type inference system that identifies potential type errors through a

flow-sensitive static analysis. This analysis is invoked at a very late stage, after the compilation

to bytecode and initialisation of the program. It computes for every expression the variable’s

present (from the values that it has last been assigned) and future (with which it is used in the

further program execution) types, respectively. Using this information, our mechanism inserts

type checks at strategic points in the original program. We prove that these checks, inserted as

early as possible, preempt type errors earlier than existing type systems. We further show that

these checks do not change the semantics of programs that do not raise type errors.

Preemptive type checking can be added to existing languages without the need to modify the

existing runtime environment. We show this with an implementation for the Python language

and demonstrate its effectiveness on a number of benchmarks.

mailto:nevillegrech at gmail dot com

Contents

Declaration of Authorship xi

Acknowledgements xiii

1 Introduction 1
1.1 Dynamically typed languages . 5
1.2 Problem statement . 6
1.3 Research objectives . 8
1.4 Overview of approach . 9
1.5 Original Contributions . 11
1.6 Outline . 13

2 Background and literature review 15
2.1 Types . 15

2.1.1 Simply typed lambda calculus . 16
2.1.2 Subtyping . 17
2.1.3 Kinds of type systems . 18
2.1.4 Fixed Points . 21

2.2 Compiling dynamically typed programs . 22
2.2.1 Partial evaluation . 22
2.2.2 Tracing JIT compilation . 23

2.3 Gradual type systems . 24
2.3.1 Dynamic types . 25
2.3.2 Usage and evaluation . 26

2.4 Soft typing . 27
2.5 Static type inference for dynamically typed languages 29
2.6 Control flow analysis . 32
2.7 Summary . 33

3 The µPython language 35
3.1 µPython source code . 35
3.2 µPython bytecode . 37
3.3 Compiling and running µPython . 38
3.4 Example . 39
3.5 Relationship to Python 3.3 . 42
3.6 Conclusion . 43

4 Type inference for µPython 45

vii

viii CONTENTS

4.1 Types . 45
4.2 Program execution points . 47
4.3 Type inference . 49
4.4 Type inference rules and trails . 51
4.5 Termination of type inference algorithm . 55
4.6 Soundness for present types . 56
4.7 Soundness for future use types . 63
4.8 Type inference examples . 70
4.9 Conclusion . 71

5 Type checking and assertion insertion 73
5.1 Checked µPython semantics . 73
5.2 Maintaining error preserving simulations . 75
5.3 Optimality . 79
5.4 Type check insertions . 82
5.5 A worked example . 84
5.6 Conclusion . 86

6 From µPython to full Python 87
6.1 Introduction . 87
6.2 Architecture of the tool . 88
6.3 Using the type checker on existing programs 89
6.4 Control flow analysis . 94
6.5 Type analysis . 96
6.6 Modelling a stack . 97
6.7 Type check insertion . 98
6.8 Variables of interest at each point . 102
6.9 Experiments . 104

6.9.1 Synthetic examples . 104
6.9.2 Real world benchmarks . 108

6.10 Results . 114
6.11 Conclusions . 117

7 Conclusion and Future work 119
7.1 Main contributions . 119
7.2 Future work directions . 120
7.3 Concluding Remarks . 125

References 127

Implementation listing 135

List of Figures

1.1 Dynamically typed program with type errors. 1
1.2 Modified main function. 3
1.3 Transformed version of the compute function. 4
1.4 Phases of the type checking process. 12

2.1 Typing rules for the simply typed lambda calculus 17
2.2 Constraints introduced for the simply typed lambda calculus. 17
2.3 Classifications of some common programming languages [21] 19

3.1 Syntax of the µPython language . 36
3.2 The µPython bytecodes . 37
3.3 µPython compiler . 39
3.4 Semantics of the µPython Bytecode . 40
3.5 A simple µPython example . 40

4.1 Type lattice . 47
4.2 Correspondence between stacks and execution points. 49
4.3 Inference rules for the `p judgement (axioms). 51
4.4 Inference rules for the `p judgement. 52
4.5 Inference rules for the `f judgement (axioms). 53
4.6 Inference rules for the `f judgement. 54
4.7 Functions can redefine themselves . 70
4.8 Simple recursion . 70
4.9 Mutual recursion . 70
4.10 Analysing this example requires going around the loop several times. 71

5.1 Syntax of checked states . 75
5.2 Algorithm for inserting type checks in µPython programs. 83
5.3 Macros for type checking insertions. 84
5.4 Control Flow for the µPython example . 85
5.5 Derivations of present and future use types. 85
5.6 The transformed µPython example with preemptive type checking. 86

6.1 Phases of the type checking process, outlined in the user code. 89
6.2 Outline of type checking process. 90
6.3 Conceptual structure. 91
6.4 Instantiation and interaction of instruction objects. 93
6.5 Algorithm for constructing the intra-procedural control flow graph 95
6.6 Type check insertion algorithm. 99

ix

x LIST OF FIGURES

6.7 Algorithm for emitting the bytecode. 100
6.8 Bytecode for the specialised main function. 101
6.9 Bytecode for the specialised compute function. 102
6.10 Bytecode for the second specialised compute function. 103
6.11 Original listing for example erasefile. 105
6.12 Transformed code for the example erasefile. 105
6.13 Original and transformed code for the example erasefile2. 106
6.14 Listing for the example erasefile3. 107
6.15 Original listing for example fixpoint . 108
6.16 Transformed code for example fixpoint. 109
6.17 Original vs. manually modified listing of mandelbrot-python3-3. 110
6.18 Code snippet from meteor-contest showing possible type error. 113
6.19 Code that raised type errors submitted by a stackoverflow user. 114
6.20 Table of results. 116

7.1 A Python decorator. 122
7.2 Calling a method on objects in a set. 124

Declaration of Authorship

I, Neville Grech , declare that the thesis entitled Preemptive type checking in dynamically typed

programs and the work presented in the thesis are both my own, and have been generated by me

as the result of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at this

University;

• where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated;

• where I have consulted the published work of others, this is always clearly attributed;

• where I have quoted from the work of others, the source is always given. With the excep-

tion of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself;

• parts of this work have been published as: Neville Grech, Julian Rathke, Bernd Fischer.

Preemptive Type Checking in Dynamically Typed Languages. In Proceedings of ICTAC,

2013.

Signed:

Date: 7th November 2013

xi

mailto:nevillegrech at gmail dot com

Acknowledgements

The expert guidance and patience of both my supervisors Julian Rathke and Bernd Fischer were

instrumental to the completion of this doctoral thesis, and I cannot thank them enough for this.

I would also like to thank the kind people around me, both in the UK and in Malta for their

help and support. My parents and friends have given me their unequivocal support throughout.

Thanks goes to my fiancée Marilyn for supporting me and accompanying me in Southampton.

Finally, I would not have been able to pursue a doctorate without the competitive funding pro-

vided by the School of Electronics and Computer Science and STEPS Malta.

Programming language theory is one of the most important branches in computer science, and I

encourage people to learn more about this very interesting field.

xiii

Chapter 1

Introduction

In a dynamically typed language such as Python [39], the principle type of any variable or

expression in a program is determined through runtime computations and can change throughout

the execution and between different runs. Type checking is typically carried out as the program

is executing and type errors manifest themselves as runtime errors or exceptions rather than

being detected before execution. However, badly typed programs are potentially dangerous. For

example, the Mars climate orbiter crashed into the atmosphere due to metric mixup [1], a form of

type incompatibility that can be detected by some type systems [59, 60]. Type incompatibilities

are an indication that the code has latent errors and therefore the earlier they are detected the

earlier the code can be fixed.

Figure 1.1 shows a small example program that takes user input either from the screen or as

command line arguments and calculates a result based on this and further input. In a statically

typed language, compilation of this program should fail with multiple type errors. Namely, at

1 from sys import argv
2
3 def compute(x1=None,x2=None,x3=None):
4 global initial
5 if initial%5==0:
6 fin=int(input(’enter final value: ’))
7 return x1+x2+x3+fin
8 else:
9 initial-=1

10 return compute(x2,x3,initial)
11
12 def main():
13 global initial
14 if len(argv)<2:
15 initial=abs(input(’enter initial value: ’))
16 else:
17 initial=abs(argv[1])
18 print(’outcome:’,compute())
19
20 if __name__==’__main__’:
21 main()

Figure 1.1: Dynamically typed program with type errors.

1

2 Chapter 1 Introduction

lines 15 and 17, function abs is given a string instead of a numeric type. Also, at line 7, the

addition operations could be called with None and Integer arguments. In a dynamically typed

language, the program will fail at either line 15 or line 17, depending on the arguments passed to

the program. If this program is executed using the standard Python interpreter without passing

command line arguments, we get the following interaction on the shell prompt:

$ python foo.py

enter initial value: 45

Traceback (most recent call last):

File "foo.py", line 21, in <module>

main()

File "foo.py", line 15, in main

initial=abs(input(’enter initial value: ’))

TypeError: bad operand type for abs(): ’str’

We can see that the program only raised a TypeError when it hit line 15, after user input has

been taken.

In this thesis we introduce the concept of type error preemption for dynamically typed lan-

guages. Our goal is to force the termination of the program execution as soon as it can be

detected that a type error is inevitable. In some cases, this can be even before the program exe-

cution starts. Our analysis, which is at the core of preemptive type checking, infers the potential

types for every variable and expression and tries to find the earliest point from which a program

is guaranteed to raise a TypeError. If we analyse this program statically with preemptive type

checking enabled, we are presented with a few “potential” type errors, among which is the error

described above.

Furthermore, with preemptive type checking enabled, the main function gets automatically

transformed to:

def main():

raise PreemptiveTypeError(’Type mismatch ...’)

global initial

if len(argv)<2:

initial=abs(input(’enter initial value: ’))

else:

initial=abs(argv[1])

print(’outcome:’,compute())

This terminates the program as soon as the main function is called and therefore reduces the

time required for testing since no user input is needed for the error to be raised. Now, we assume

that the user “fixes” this bug and rewrites the main function as in Figure 1.2.

Chapter 1 Introduction 3

12 def main():
13 global initial
14 if len(argv)<2:
15 initial=abs(int(input(’enter initial value: ’)))
16 else:
17 initial=abs(int(argv[1]))
18 print(’outcome:’,compute())

Figure 1.2: Modified main function.

When this program is run without preemptive type checking, the user notices that depending on

the input, the program will either raise a TypeError or work as expected, for example:

$ python foo.py

enter initial value: 3

enter final value: 3

outcome: 6

$ python foo.py

enter initial value: 2

enter final value: 3

Traceback (most recent call last):

File "foo.py", line 21, in <module>

main()

File "foo.py", line 18, in main

print(’outcome:’,compute())

File "foo.py", line 10, in compute

return compute(x2,x3,initial)

File "foo.py", line 10, in compute

return compute(x2,x3,initial)

File "foo.py", line 7, in compute

return x1+x2+x3+fin

TypeError: unsupported operand type(s) for +: ’NoneType’ and ’int’

As we can see, not only is the manual testing process time consuming, but automated testing

mechanism techniques will not necessarily produce the right combination of inputs to find these

errors.

4 Chapter 1 Introduction

def compute(x1=None,x2=None,x3=None):
global initial
if initial%5==0:

begin inserted type check
if not isinstance(x1, Number):

raise PreemptiveTypeError(...)
if not isinstance(x2, Number):

raise PreemptiveTypeError(...)
end inserted type check
fin=int(input(’enter final value: ’))
return x1+x2+x3+fin

else:
initial-=1
return compute(x2,x3,initial)

Figure 1.3: Transformed version of the compute function.

With preemptive type checking we can minimise this effort and preempt type errors much

quicker. Our analysis infers that x1 and x2 are either of type NoneType or Integer, depending

on the control flow taken by the program. Our analysis also concludes that x1 and x2 need to

be integers for the program not to raise type errors. By simply statically analysing this program

with preemptive type checking, we can get the following output:

Failure 1 - partial Traceback:

File "foo.py", line 18, in main

File "foo.py", line 6, in compute

Variable x1 expected Number but found NoneType

Failure 2 - partial Traceback:

File "foo.py", line 18, in main

File "foo.py", line 10, in compute

File "foo.py", line 6, in compute

Variable x1 expected Number but found NoneType

Failure 3 - partial Traceback:

File "foo.py", line 18, in main

File "foo.py", line 10, in compute

File "foo.py", line 10, in compute

File "foo.py", line 6, in compute

Variable x1 expected Number but found NoneType

We note that these are not the only failures that can occur, but our mechanism will only flag the

failures that are guaranteed to happen first, so as not to confuse the user. We can see that for

this particular example there are no false positives and all errors can occur when this program

is executed. Another point is that determining the possible types of x1 and x2 is difficult and

expensive. For example, using data flow analysis techniques, the fact that x1 can be an integer

is only discovered on a path that inlines function compute three times. In this thesis we will be

introducing an effective technique that uses trails (see Section 4.4) to perform a flow sensitive

type inference. Preemptive type checking can also transform the compute function so that

any type errors are preempted (see Figure 1.3). Note that the assertions cannot be inserted any

earlier (i.e., before the if-statement) because there are possible control flow paths that do not

raise type errors. Moreover, the inserted assertions would contain all details to identify the

source of the type error, in particular the variable causing the type error, the location where the

Chapter 1 Introduction 5

type error would be raised and the present type there. Hence, the user can correct the program

with minimal debugging. There are no implementations of soft typing [22] or gradual typing

[96, 98] that are sophisticated enough to handle this example. However, if soft typing or gradual

typing were used in this case, any implementation would insert a type check right before the

additions of x1 and x2. This however means that the user input still has to take place before the

type error can be raised.

In dynamic, gradual or soft typing, these errors are only detected at the point when a value of

an incorrect type is used. In our case, we guarantee that the inserted runtime checks preempt all

type errors. Secondly, we guarantee that these do not affect the semantics of programs that do

not raise runtime type errors. Finally, we guarantee, using our linear optimality condition, that

type errors are preempted at an optimal (early) point.

The usefulness of a type system is not just its ability to simply reject bad (and sometimes good)

programs. Rather, its usefulness is the ability to prevent failures from occurring and the ability

to hand enough information to the programmer so that he can debug the errors. In dynamically

typed languages, errors are raised when the arguments to a function application do not match the

function’s signature. This is not always helpful. In contrast, with preemptive type checking, our

generated runtime checks also indicate the locations where type errors can potentially originate.

A programmer can therefore inspect these points to better understand where a type error can

occur and where it can come from before executing the program.

1.1 Dynamically typed languages

Types are a very important concept in programming languages. A type is a set of values of a

particular kind, for example, the set of all natural numbers. In this view, a type can be defined as

a predicate over the universal set. Alternatively, types can also be seen as abstractions of terms in

a programming language: a program is made up from operations, which are restricted by the type

of the terms that they can operate upon. A program is called well-typed if for all the operations

in the program, the type of the data that these operations operate upon matches the type of the

operation. One way to perform type checking is to do so at runtime: just as an operation is about

to be invoked at runtime, a type check is performed. If the operation was not originally defined

over the type of the value passed to the operation, a type error exception is raised. This form of

type checking is called dynamic type checking. Therefore, not all syntactically valid programs

are well-typed. If a program is not well-typed, it is possible for an operation to be used on a

value with an incompatible type. Such a program is said to be ill-typed. A type checker accepts

well-typed programs and rejects ill-typed programs. Hence, the role of type checking is to make

sure that every operation is only called with values over which that operation is defined.

The typing discipline typically dictates the way the type checking is carried out in a program-

ming language. In static type checking, a proof is constructed that no operation is called with

values over which the operation is not defined. If such a proof cannot be produced cheaply by

6 Chapter 1 Introduction

the type checking rules of the particular language, then the program is statically rejected and

labelled as ill-typed. This is known as static type checking since the checking is done before

executing the program.

Dynamic type checking is a mechanism where most of the type checking occurs at runtime.

In a dynamically typed language, the type of any expression or variable is determined through

runtime computations. In most popular [3] dynamic language implementations such as Python

[39], Ruby [68], JavaScript [2] and PHP, type checking is carried out as the program is executing,

while operations are being called. A type error manifests itself as a runtime error or exception

rather than being detected by a static type checker.

Dynamically typed languages have been in existence since the 1950s. Lisp [69] was the first

dynamically typed high level language. A number of features were pioneered or popularised

in this language and new features continued to be introduced in dynamically typed languages.

Some examples include hygienic macros and call/cc in Scheme [103] and garbage collection

in Smalltalk [46] and some versions of Lisp. Just-in-time compilation also originated from Lisp

[12]. Dynamically typed languages are largely interpreted and tend to sacrifice performance and

static safety guarantees to flexibility and simplicity. Several authors have been working on ways

to speed up the execution of these languages [50, 16, 44, 43]. In our research, we tackle the

problem of preempting type errors, since just-in-time compilation has significantly reduced the

former problem in recent years [43].

A large body of work on reconciling both typing disciplines has emerged over the years. Soft

typing [22] is a type system where the type checker implicitly converts a dynamically typed

program into a statically typed one. It does this by inserting explicit runtime type checks (also

called narrowing functions) around the arguments of primitive operations [22]. Gradual typing

[96, 98] mostly focuses on allowing statically typed portions of code to interact with dynamically

typed portions. In a type system which can make this happen, the statically typed portions of

the program can be statically type checked, while the dynamically typed portions are checked at

runtime. Similar technology has already been adopted in the software industry and C# [76, 70]

and Java [88] allow portions of the code to be dynamically typed. Other type systems are

discussed in Chapter 2. The existing work simply allows statically typed portions of the code

to interact with dynamically typed portions. No current work focuses on detecting runtime type

errors as early as possible.

1.2 Problem statement

This thesis tackles the problem of preempting type errors in dynamically typed programs as

early as possible. This is a difficult problem especially since we are trying to not restrict the

power of the language.

Chapter 1 Introduction 7

The problem we are dealing with is multi-faceted. Firstly, we would like to find all possible

type errors in a dynamically typed language. Secondly, we would also like to find these type

errors as early as possible. Lastly, however, we do not want to transform a dynamically typed

language into a statically typed one. We would like to retain a language with a dynamically

typed semantics. This is a difficult requirement to satisfy, mainly because it is often impossible

to statically resolve the actual functions that are called at every point in a program.

Early type error detection. In a statically typed program, type errors can be detected before

running it. This is possible because given a program, it is possible to statically compute a

type safety guarantee. The language implementation rejects any programs where this cannot

be produced. In some languages, types are explicitly declared. In other languages, types can

be determined by a decidable type inference process. In dynamically typed languages, the type

of an expression or variable is resolved at runtime. A simple form of type checking is usually

adopted in dynamically typed languages [39, 68, 2]. This is performed at runtime while the

instruction is being executed. Such an approach can give no static type safety guarantees since

a type error might be raised at any time and at any point during execution. In soft typing [22],

type errors are not raised at an earlier point than traditional runtime type checking.

Easy to understand type error messages. The error messages from the type errors need to

explain in relevant detail the reason why a type error can or will manifest itself. This information

should reduce the debugging effort, and not increase it [36]:

“Type errors in Soft Scheme are pure torture ... explaining type errors in Soft

Scheme remains for PhD-level experts.”

Ideally, the type error messages must contain the same dynamic information as type errors in

dynamically typed languages, perhaps augmented with extra information.

Detecting all potential type errors. Proponents of unit testing and dynamically typed lan-

guages [33] argue that exercising a program written in a dynamically typed language using unit

testing is enough to find most type errors. In reality, testing only reveals a minority of potential

type errors [34]. Testing programs that run for a long period of time, such as web or phone

applications, naturally also takes a long time. Testing is also laborious: one needs to write mock

objects and test cases, and also needs to execute these in a realistic environment. On some sys-

tems, tests can take hours to execute. Programmers are naturally tempted to circumvent these

tests during their development cycle and writing these gets increasingly more complex the larger

the system one is testing.

The fact that a modest number of type errors cannot be detected statically should not preclude

the use of type inference to detect type errors in dynamically typed programs. Indeed, a human

reviewer can find a number of security and functional bugs by simply reviewing a piece of code

[65]. In soft typing [22], a number of suspect program points can also be flagged in advance

using a process of circular unification. The minimal text principle also originates from this

8 Chapter 1 Introduction

work [22]. This principle states that “the type system should accept unannotated dynamically

typed programs. Otherwise, the programming interface will be more cumbersome than that

provided by a conventional dynamically typed programming language” [22]. We aim to respect

this principle.

Dynamically typed semantics. Currently, type systems such as gradual typing [98] and other

forms of typing [5, 38, 117] can statically flag some type errors but these rely on type information

being explicitly present in the program. On the other hand previous work on static type inference

for dynamically typed languages, such as Diamondback Ruby [41, 40], RPython [10], Strongtalk

[20] or Soft Scheme [116] introduce restrictions to the language, and force a statically typed

semantics on a subset of the original language. The example in Figure 1.1 modified as in Figure

1.2 is therefore not allowed to execute in these languages, despite the fact that the program will

not raise type errors for some inputs.

Today’s most popular dynamically typed programming languages are compiled to dynamically

typed bytecode before being executed. The process of analysing or transforming programs writ-

ten in a dynamically typed language is more problematic than in languages that are compiled.

For instance, code can be dynamically generated, loaded from a network and sometimes im-

ports can only be resolved at runtime. Therefore, retrieving the source code of the function that

is to be type checked and the functions that it calls is not always possible. At runtime, we can

retrieve the bytecode of any loaded non-primitive functions. For this reason we use a similar

approach to RPython [10]. This approach requires us to base the analysis on bytecode rather

than source code. Dynamically typed bytecode is different in nature from lambda calculus or

similar languages. Therefore our formal analysis has to reflect this.

1.3 Research objectives

The goal of this work is to develop a type checking mechanism that eagerly tries to preempt any

type errors in running programs. Under this checking mechanism, a program would compute

the same result as a dynamically typed program if the program is well typed. Through a simple

system of type checking assertions, if we can determine that the rest of the execution results in a

type error, it is more sensible to halt the execution of the program and notify the user than to fail

with a runtime exception later on. This can be achieved by strategically inserting explicit type

check assertions in the running code.

More specifically, we have the following objectives:

1. We develop a small language called µPython, a dynamically typed language based on

a subset of the Python language. This language compiles down to µPython bytecode

instructions, which we also define.

2. We formalise a special type analysis for the µPython bytecode language, and prove that

the information from our analysis is an overapproximation of the actual runtime types.

Chapter 1 Introduction 9

3. We formalise a checked µPython semantics, and formally prove that this preempts all type

errors at a linearly optimal point.

4. We propose a type check insertion and program transformation process to implement

preemptive type checking on µPython programs, running on an unmodified interpreter.

5. We implement this type checking and transformation mechanism for a subset of the origi-

nal Python 3.3 language and evaluate it on some benchmarks from the computer language

benchmarks game [4].

When formalising and implementing preemptive type checking we shall use the following cri-

teria at every step in the process:

Full dynamicity: Can the type checker handle programs where a variable is assigned with a

value of different types throughout different program locations?

Minimal text principle [22]: Does the type checker work for unannotated programs?

Rejecting correct programs: Does the type checker give out false positives?

Timing of type errors: Does the type checker catch type errors early?

Type error information: Are the error messages useful for debugging and is the right part of

the code being blamed for the type error?

1.4 Overview of approach

Before defining the preemptive type checking mechanism, we need to define a language on

which this will be working on. We define µPython, a dynamically typed core language mod-

elled on Python. A key characteristic of µPython (see Chapter 3) is that the types of variables

may change during execution. It is a bytecode based language with dynamically typed variables

and dynamically bound functions. Although small, the language is still sufficiently expressive to

require a rich static type analysis. Our type analysis is actually performed on the bytecode rep-

resentation of µPython programs. It is however useful to define a source language and therefore

we define both a source code syntax and a bytecode syntax. We also define a simple compiler

to translate the source to bytecode. Most of our examples are written in the source language but

we only define the semantics of the µPython bytecode.

An important part of our solution is the type inference algorithm. Unlike other type inference

algorithms, our algorithm infers two kinds of types called present types and future use types (see

Section 4.1) for all variables for all program execution points. These are reconstructed using a

forward and a backwards analysis respectively. The present type for a variable indicates the type

of the value that a variable has last been assigned while the future use type indicates the type that

10 Chapter 1 Introduction

it is expected to be used as. This information enables us to pinpoint locations where to insert

type checking assertions. In order to make sure that the type inference rules are correct, we use

formal techniques. For example, we prove that the information for present and future use types

is sound. In particular, we show that the present type of any variable is an overapproximation of

the actual runtime type. Since we calculate overapproximations of possible runtime types, we

use union types to represent sets of types. We use the type information gained from this type

inference process to define a runtime semantics for µPython that implements preemptive type

checking. We further prove an optimality property that states that any type errors are preempted

at least as early as the start of the branch on the current sequence of instructions.

We then describe an algorithm that transforms bytecode programs by inserting type checks

and explicit type error exceptions in such a way that the transformed program implements the

checked semantics. This transformed bytecode can be executed using the unchecked seman-

tics and the inserted type checks and exceptions implement preemptive type checking for that

program.

For the implementation, we make use of Python’s reflective capability to analyse the program at

runtime. Since we are implementing a just-in-time type analysis, we lose access to the syntax

of the program and can only retrieve the bytecode.

There are also other reasons why we are modelling our type system on bytecode rather than

concrete syntax:

• We can start our analysis at a later point during the execution, for example after initialisa-

tion, and so get a more accurate analysis.

• We can leverage the work done by the bytecode compiler such as lexical analysis and

identify which variables are locals or globals.

• We do not need to implement features that are just “syntax sugar”.

We also implement our type checking mechanism for a subset of the full Python language. Our

type checking process is integrated with the runtime environment. Unlike most analysers, our

type checker does not take a program’s source code. Instead, our type analysis works directly on

a live program and environment, introspecting and analysing the environment for the currently

executing program. This program is created and initialised by the standard interpreter. Thus the

type checking process is divided into three phases, as shown by Figure 1.4.

The first phase, or the initialisation phase, simply involves reading the source files, compiling

to bytecode and executing the program until the type checker is called on a specific function,

for example main. During this process the environment is initialised, classes and functions are

created, and external modules are loaded. During this phase, the full power of the language can

be used. In the case of Python, this includes metaclasses, functions such as eval/exec and

also dynamic code loading. In terms of the example of Figure 1.1, this phase runs up to but not

Chapter 1 Introduction 11

including Line 21. At that point, the interpreter would have read the source file and compiled

both compute and main. These functions would therefore be present in the environment.

Once the initialisation process has stabilised, the analysis and program transformation process

can be much more accurate. The analysis process initially involves a control flow analysis.

This can be any kind of control flow analysis as long as the static control flow analysis is an

overapproximation of the actual control flow at runtime. There are several algorithms which do

this, one of the best known being k-CFA [93, 94]. The analysis process is invoked by loading

the preemptive type checking mechanism and invoking it in the code.

We also specialise the inserted type checks, depending on the call site of this function. For this

reason, specialised versions of functions are generated with assertions inserted into them. Calls

to the original functions are replaced with these specialised functions in the bytecode in the en-

vironment. Once this process is complete, the execution of the program is continued. This time

however, the program is executing using a preemptive type checking system which guarantees

that preemptive type errors are raised earlier. These type errors are also more informative than

standard type errors. In some cases the specific function that is being checked, for example

main, can fail with an error inserted at the first execution point. This happens if main is shown

to raise a type error under all circumstances. At this point warnings can be issued to aid the

programmer with the debugging process.

1.5 Original Contributions

Our main contribution here is the development of the concept of type error preemption for

dynamically typed languages. Our type checking mechanism tries to preempt all type errors at

the earliest possible point. This is a novel contribution, and a problem that we solve in our work.

We also present a number of technological contributions that make this possible.

Analysis on bytecode rather than source code. Tools that work at a bytecode level tend to

be more usable than those that work on source code, since they integrate better with the build

process. Most type systems are however defined on source languages. In our case, we formalise

our type system entirely at the bytecode level. This makes our formalism more useful when

building a tool that implements our type checking mechanism.

Innovative implementation in Python. There are several innovations in our approach and

implementation. Rather than proposing a type inference mechanism that tries to cope with the

difficult programming styles employed in Python, we propose a mechanism that performs type

inference at runtime. In general, this simplifies the analysis and increases its accuracy. This

approach is also taken by Firefox [51] and arguably the .NET DLR. In our work, however,

we do not make any changes to the implementation of Python but implement preemptive type

checking as a third party library which can be deployed in existing Python installations. Our

12 Chapter 1 Introduction

Source code

Standard Python
interpreter

Live environment

x main
z

y

Standard Python
interpreter

Resume
execution

updated environment

x
z _main

y

Preemptive type
checking

implementation

Checked
execution

phase

Initialisation
phase

Analysis/
transformation

phase

Full language

Figure 1.4: Phases of the type checking process.

implementation is able to substitute the bytecode of functions with specialised versions that

have type checks inserted into them at initialisation time or runtime.

Helpful type error information. All potential type errors can be determined before execution

of the transformed code. This information is available to the user as warnings and type error

information. At runtime, the type errors are preempted much earlier than by using existing type

checkers. If the statically generated constraints hold, then the program does not raise any type

errors.

Present and future use types. Mainstream dynamically typed languages have side effects

and a data flow analysis approach yields a more accurate type inference. Values are typically

placed in memory before being used at a later point in the program. Our type system, which

has present and future use types, distinguishes between variable assignments and operations

consuming these variables.

Abstracting nodes in the control flow graph as truncated call stacks. When building our

control flow graph of the program, we refer to our nodes as execution points. These nodes do

Chapter 1 Introduction 13

not simply refer to actual locations in the program but are actual call stacks, truncated to a finite

depth.

Nonrestrictive type checking. A common way to type check dynamically typed programming

languages is to introduce restrictions on the language. In the process, the original language loses

its dynamicity. Our type system does not enforce a statically typed semantics on a dynamically

typed program. This sets it apart from systems such as DRuby [41] and RPython [10], as the

expressiveness of the dynamically typed language is preserved.

1.6 Outline

We present the background on type theory, program analysis and other techniques together with

related work in Chapter 2. Chapters 3, 4 and 5 contain the theoretical work of this report.

In Chapter 3, we formally define a small dynamically typed language µPython, upon which

we base our type inference research. This involves defining source and bytecode grammars,

an interpreter and a compiler. In Chapter 4 we formalise our type system and original type

inference mechanism while in chapter 5 we propose an alternative, preemptively type checked

semantics to the µPython language and also show how this semantics can be mapped back to

the original semantics.

In Chapter 6, we implement a type inference for a subset of the full Python language, based on

the techniques described in the preceding Chapters. Here, we present a number of optimisations

and methods that allow us to adequately implement our tool. We also evaluate the tool on a

number of synthetic and also real world benchmarks. We demonstrate that we achieved the

objectives outlined in Section 1.3.

Finally, in Chapter 7 we conclude this thesis and we propose further research and work that can

be carried out.

Chapter 2

Background and literature review

This chapter gives an overview of the topics that inform this work on preemptive type checking.

We start in Section 2.1 by looking at type theory and type systems. This section introduces

the different kinds of typing strategies in programming languages and compares and contrasts

dynamically typed and statically typed languages. We also look at compilation techniques for

dynamically typed languages (see Section 2.2). The remaining sections are dedicated to related

or competing concepts and strategies in type checking. Approaches that include combinations

of static and dynamic typing are described in Section 2.3. Approaches where the type checking

mechanism is soft or optional are described in Section 2.4. Other approaches to type check-

ing utilise type inference and involve defining a statically typed subset of a dynamically typed

language. These are described in Section 2.5. Finally, since our approach depends on accurate

control flow analysis, we review relevant approaches in Section 2.6.

2.1 Types

In set theoretical terms, a type can be described as a set of values of a particular kind, for

example, the set of all natural numbers. Types are also useful abstractions of terms written in a

programming language. In this section we introduce type theory concepts required to understand

the rest of the thesis. Our presentation is based on [81].

Within the realm of software engineering, formal methods help us to ensure that a system be-

haves according to some set of rules and specifications. A type system is a formal method which

is an integral part of a programming language. Described as a “tractable syntactic method for

proving the absence of certain program behaviours” [81], types work by “classifying phrases

according to the kinds of values they compute” [81].

Initially, type systems were introduced by Bertrand Russell [89] in the beginning of the 20th

century to avoid paradoxes in logic such as Russell’s paradox. Even though it was not their

15

16 Chapter 2 Background and literature review

original intended use, they have become indispensable in the design of programming languages.

Type systems are ideal to detect bad behaviours of a program.

2.1.1 Simply typed lambda calculus

The lambda calculus is a formal system for function definition, function application and recur-

sion. It is a small functional language, which is a very important part of modern type theory,

and therefore relevant to this thesis. The simply typed lambda calculus, introduced by Alonzo

Church [24], is a typed version of the lambda calculus. A common syntax of the simply typed

lambda calculus is as follows:

e ::= c | (λx : τ.e) | (e e) | x

τ ::= T | τ → τ

In the above definitions, we may assume that c is a primitive constant expression such as ‘34’,

and that x is a variable name. An expression e can be a constant value. Expressions can also

take the form λx : τ.e where τ is a type such as Int. Expressions of these kind are called lambda

abstractions. When such an expression is applied, the expression e is evaluated according to

the evaluation strategy for the language. The syntax of function applications is (e e). The first

sub-expression in the structure is the function that is being called and the second sub-expression

is the argument to that function application.

Free vs. bound variables. In the lambda calculus, variables can be either free variables or

bound variables. For instance x is a bound variable in the term M = λx.T , and a free variable

of T . We say x is bound in M and free in T . If T contains a subterm λx.U then x is rebound

in this term. This nested, inner binding of x is said to shadow the outer binding. Occurrences of

x in U are free occurrences of the new x. Bound variables can be substituted by a non-captive

fresh variable name to result in an equivalent expression. For example, the lambda expressions

λx : τ.x and λy : τ.y are equivalent.

Type inference. Figure 2.1 contains the typing rules for the simply typed lambda calculus.

Typing rules are written as one or more premises at the top and one conclusion at the bottom.

Γ ` x : τ is read as “x has type τ under the type environment Γ”. The type environment

Γ is a mapping from variables to types. The semicolon operator adds a new binding to the

environment. For example, in the T-ABS rule for typing abstractions, the premise adds one

more assumption (x : τ1) to the environment.

Types can be automatically reconstructed or inferred by the Hindley-Milner type inference al-

gorithm, which is designed to work with the Curry-style simply typed lambda calculus. Thanks

to this algorithm, one does not need to manually annotate every lambda expression with a type

annotation. A comprehensive description of this algorithm is given by Damas and Milner in

Chapter 2 Background and literature review 17

x : τ ∈ Γ

Γ ` x : τ
T-VAR

Γ;x : τ1 ` e : τ2

Γ ` λx.e : τ1 → τ2
T-ABS

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
T-APP

Figure 2.1: Typing rules for the simply typed lambda calculus

JΓ ` x : τK = Γ(x) = τ

JΓ ` (λx.e) : τK = ∃α1α2.(JΓ;x : α1 ` e : α2K ∧ α1 → α2 = τ)

JΓ ` (e1 e2) : τK = ∃α.(JΓ ` e1 : α→ τK ∧ JΓ ` e2 : αK)

Figure 2.2: Constraints introduced for the simply typed lambda calculus.

[28], which is also extended to handle polymorphic types. A more contemporary explanation

of these algorithms is available in [82]. Although such an inference algorithm is not easily ap-

plicable to dynamically typed programming languages, it is still relevant today in the context of

functional languages such as ML and Haskell. Type inference generally consists of a process of

constraint generation followed by unification, a process which unifies type variables with actual

types. The constraints in Figure 2.2 are introduced for the simply typed lambda calculus. By

recursively applying these rules to a term, we introduce a number of fresh variables, together

with some constraints. These are then solved through unification. A process that is the reverse

of type inference is type erasure. In this process, the explicit type annotations are removed from

a program, before it is executed.

2.1.2 Subtyping

In order to support the difficult programming styles employed in dynamically typed programs,

we need a structure that enables multiple types to be assigned to the same variable. This leads us

(in Chapter 4) to define a type system with union types and a partial ordering. Subtyping, also

referred to as subtype polymorphism, is a means of relaxing the requirements of type matching

in languages such as the simply typed lambda calculus. Subtyping is found in object-oriented

languages as a means to implement inheritance. A complete explanation of subtyping is avail-

able in [81].

A type system that supports subtyping has a subsumption relation, denoted for example by

S <: T . This can be read as “T subsumes S” [81], or “S is a subtype of T ”. A typical example

would be N <: Z. The subtype relation <: is both reflexive and transitive. In subtyping, there

are two special types that can be introduced, ⊥ and >. The ⊥ type is the most specific type in a

type system. Every type subsumes ⊥ and there are no values of type ⊥. On the other hand, > is

the most generic type - it subsumes any type.

18 Chapter 2 Background and literature review

Over-approximation. Over-approximation of a type occurs when the type of a value, contained

in a variable at a specific location given by the type inference, is less accurate, i.e., is a supertype,

than the actual runtime type. If the type of a value in a variable x at a location n is inferred as

τi and the actual type at runtime is τr, if τi :> τr and τi 6= τr, then we can say that the type

inference is over-approximating the type of variable x at location n.

Under-approximation. Under-approximation of a type occurs when the set of possible types

of the value contained within a variable at a specific location during runtime is not a subset or

equal to the set of types detected by type inference. Assuming that the type of a value in variable

x at a location n is inferred as τi and that the actual type at runtime is τr, if τi :> τr does not

hold, then we can say that the type inference is under-approximating the type of variable x at

location n.

2.1.3 Kinds of type systems

In this section we present a taxonomy of typing strategies. There are three main differentiating

factors. We tend to describe a programming language according to whether it is dynamically

typed or statically typed. A language with any typing strategy can be either strongly or weakly

typed. If a language is statically typed, it can be either implicitly or explicitly typed.

Implicitly vs. explicitly typed. Whether a programming language has type annotations or

not does not solely depend on whether the language is dynamically typed or statically typed.

Statically typed languages may be either implicitly typed or explicitly typed. In explicitly typed

languages, for example Java, any declaration of a variable, field or method has to be explicitly

declared and its type has to be explicitly written in the declaration. For example, the types of

arguments to a method and its return type are explicitly declared. In implicitly typed languages,

these can often be left out and a type inference infers these from the usage of these variables and

functions using a technique called unification. For example, in Haskell, a function that returns

the factorial of a number can be implicitly typed:

fac 0 = 1

fac n = n * fac (n-1)

or explicitly typed:

fac :: Num a => a -> a

fac 0 = 1

fac n = n * fac (n-1)

Liskov and Zilles [64] characterise a language as being either strongly typed or weakly typed.

A strongly typed programming language prevents functions being applied on data that does not

match the explicitly or implicitly declared type of the argument. Cardelli [21], on the other hand

classifies type systems as being either safe or unsafe. Both typed and untyped languages can be

either safe or unsafe languages.

Chapter 2 Background and literature review 19

Typed Untyped
Safe Haskell Lisp
Unsafe C Assembler

Figure 2.3: Classifications of some common programming languages [21]

A number of statically typed languages, for example C, allow the user to cast from any type to

another without actually checking that the coercion preserves type safety. We therefore consider

the type system of C to be unsafe. Most dynamically typed languages are safe. Some examples

are Python, Ruby and Lisp/Scheme. Languages that have safe typing do not allow the user to

subvert the type system, by placing runtime checks or disallowing typecasts altogether

Statically vs. dynamically typed languages

In practice, mainstream languages tend to have elements from both kinds of type disciplines.

Our understanding of what constitutes a statically typed language is one where it is possible to

overapproximate most of the types of any variables/expressions cheaply and accurately. This

makes it possible to type check a program statically. In dynamically typed languages, most

of the type checking is performed at runtime. In this section we explore the advantages and

disadvantages of both types of languages and also some of their differences. A comprehensive

review of dynamically typed languages is given in [110].

Statically typed languages

Statically typed languages have a number of advantages, namely:

• Type annotations add more information to the program and serve as documentation.

• Most of the type checking does not need to be performed at runtime, and therefore the

program runs faster. Optimisations can be performed and runtime dispatching over the

types of values can be avoided since assumptions can be made about the types of the

program’s variables [22].

• Type errors can be detected at compile time, preventing runtime errors [22]. This reduces

the testing effort.

Obtaining the types of variables and functions statically is straightforward. This information

is either explicitly annotated or can be inferred using an algorithm, typically a variant of the

Hindley-Milner algorithm. A type safety proof can be generated for a statically typed program,

but typically cannot be generated for a dynamically typed one.

20 Chapter 2 Background and literature review

The expressiveness of the type system is sometimes limited. For example, statically typed lan-

guages allow programs that divide an integer number by zero to run. In an idealised language,

the divisor would be a non-zero integer. Most languages do not offer this degree of flexibility in

their type system, and have to resort to runtime checks. Most type systems are therefore under-

constrained [110]. On the other hand, a static type checker might reject a program that works

perfectly in a dynamically typed language. It is possible to write a program that might work

with a less constrained type. For example, a flatten function which takes an iterable that can

contain other iterables and returns a single flat iterable can be expressed in Python as follows:

def flatten(l):

for el in l:

if (isinstance(el, collections.Iterable) and

not isinstance(el, basestring)):

for sub in flatten(el):

yield sub

else:

yield el

This function would however not pass a static type checker.

Rejecting programs that may not raise a type error limits the expressiveness of the language [22].

This is because the type checker conservatively errs on the side of safety. In many cases, this

also limits generality [22] and hence reuse. This is one of the reasons why dynamically typed

languages are more productive [83, 26]. For example, the Pascal type checker makes it difficult

to write a sort procedure that can work with arrays of different lengths [22]. Prechelt [83] also

comes to the conclusion that programs written in statically typed languages tend to require more

effort to write for the same sets of requirements.

Due to a compilation step, the turnaround time, i.e., the time to build and test a program, is

typically higher than in dynamically typed languages. This is especially true in large projects,

where code needs to be compiled before the program can start running.

Even though it is easy to write an interpreter for a statically typed language, most languages

are typically implemented as a compiler. It would not be sensible to design a statically typed

language and relinquish the advantages of static typing. A number of language features are how-

ever more difficult to implement. For example, it is hard to support metaprogramming features

since the program’s structure is lost at runtime. Also, if constraints are not placed on the expres-

siveness of the metaprogramming features, type checking the code becomes undecidable [104].

It is however possible to support restricted metaprogramming in a statically typed language, and

some examples include MetaML [104], Jumbo [58] and Meta-AspectJ [119].

Dynamically typed languages

Dynamically typed languages have a number of advantages over the statically typed languages:

Chapter 2 Background and literature review 21

• Lack of type annotations makes the syntax simpler, making the language easier to learn.

• Implementations and programmer tools such as debuggers and profilers are easier to write.

• Dynamically typed languages support higher-level language constructs such as metapro-

gramming and reflection.

Features such as macros (Lisp [69]), metaprogramming (Lisp [69]), reflection, continuations

(Scheme [103]) and garbage collection (Lisp [69], Smalltalk [46]) were originally introduced

in dynamically typed languages. Features such as first class functions are still not supported in

some mainstream statically typed languages. Meanwhile, some mainstream dynamically typed

languages such as Stackless Python [107] support continuations. These features are easier to

implement if the programming language is interpreted rather than compiled.

Even though most dynamically typed languages are strongly typed (and also safe), most of them

do not offer any form of static type checking. There are, however, some language extensions

that are able to do more stringent type checking, at an early stage during execution. Some of

them, such as traits [75] for Python, require the programmer to manually insert type annotations.

Programming languages are increasingly allowing for both dynamically typed and statically

typed programming features. Gradual typing [96] could be adopted to allow a fine grained level

of detail to the programmer.

Flexibility of the type system is not an issue in dynamically typed languages, since type checking

is done at runtime [110]. If a particular operation is supported on the runtime type of the value

being used by the operation, then the operation succeeds. This also means that in order to

discover all possible type errors, one has to exhaustively test the program, which is typically

intractable.

2.1.4 Fixed Points

A number of predicates, sets and algorithms in this thesis require knowledge of fixed points, and

therefore we explain these concepts at an early stage. In doing so, we use the same presentation

as [77].

Consider a monotone function f : L→ L on a complete lattice L = (L,v,t,u,⊥,>). A fixed

point of f is an element l ∈ L such that f(l) = l and we write

Fix (f) = {l | f(l) = l}

for the set of fixed points. The function f is reductive at l if and only if f(l) v l and we write

Red(f) = {l | f(l) v l}

22 Chapter 2 Background and literature review

for the set of elements upon which f is reductive; we say that f itself is reductive if Red(f) = L.

Similarly, the function f is extensive at l if and only if f(l) w l and we write

Ext(f) = {l | f(l) w l}

for the set of elements upon which f is extensive; we say that f itself is extensive if Ext(f) = L.

Since L is a complete lattice, it is always the case that the set Fix (f) has a greatest lower bound

in L and we denote it by lfp(f):

lfp(f) =
l

Fix (f)

Similarly, the set Fix (f) has a least upper bound in L and we denote it by gfp(f):

gfp(f) =
⊔

Fix (f)

Using the Knaster-Tarski Fixed Point Theorem [29], we can show that lfp(f) is the least fixed

point of f and that gfp(f) is the greatest fixed point of f .

2.2 Compiling dynamically typed programs

Dynamically typed language implementations have traditionally been slow [4]. Recent ad-

vancements have helped in raising the performance levels of these languages. In this section

we explore the latest techniques in Just-in-time (JIT) compilation of dynamically typed lan-

guages. This section is especially relevant as our type checking mechanism is implemented

using some techniques that are used when implementing JIT compilers. Recently, a lot of work

has specialised in JavaScript, and information gathered from type inference is used to optimise

the execution of these languages. For instance, an interesting approach adopted in the Firefox

JavaScript implementation [51] involves performing a fast but unsound type inference process.

The type information is then used to compile specialised machine code versions of code snippets

and functions.

2.2.1 Partial evaluation

Traditionally, compiler-compilers relied on the user to describe the syntax and semantics of a

programming language in a domain-specific language. Unfortunately, this relies on the user to

make a clear distinction between what happens during compile time and during runtime [35].

This is especially difficult in the case of elaborate languages with dynamic features. Partial eval-

uation is a technique that can be used to generate compilers for dynamically typed languages.

Partial evaluation is a program transformation technique for specialising a program with part of

the input, thus giving a faster program for the rest of the inputs. A tutorial on partial evaluation

Chapter 2 Background and literature review 23

is given in [25]. A program can be seen as a function of input to output data:

prog : Istatic × Idynamic → O

where Istatic is input to the program that can be determined statically and Idynamic is input that is

dynamically determined. The partial evaluator is another program. It takes as input the program

and static inputs to specialise the program with. It returns a specialised program (called residual

program), which takes only the dynamic inputs. The partial evaluation process is represented as

follows:

(prog, Istatic)→ (prog∗ : Idynamic → O)

An original approach to build compilers from interpreters by Futamura [42] uses partial eval-

uation.1 The technique is known as the Futamura projection, which can be described in three

stages:

1. Partially evaluating (specialising) an interpreter with a given source, generating an exe-

cutable.

2. Partially evaluating (specialising) the interpreter as applied in (1), generating a compiler.

3. Partially evaluating the partial evaluator used in (2), generating a compiler-compiler that

given an interpreter returns a compiler.

The transformation process implemented in preemptive type checking involves inserting asser-

tions in a function that are specialised according to a given call site. This resembles partial

evaluation since we can statically determine type information. This information is not as accu-

rate as the runtime type information. Hence, the static input to our inserted type checks is the

inferred type information and the dynamic input is the actual runtime environment.

2.2.2 Tracing JIT compilation

Traditionally, programs are either interpreted or compiled. Just-in-time (JIT) compilation is a

hybrid approach, in which the program is incrementally compiled while being executed. The

compiled versions are also cached to improve performance. A considerable number of people

have been working on tracing JIT compilers for the last ten years. These kind of JIT compilers

record a linear sequence of frequently executed operations, and compile optimised versions of

these to machine instructions.
1The referenced paper is a re-published paper. The original was published in Japanese during the 60s.

24 Chapter 2 Background and literature review

A trace is a path through the control flow graph of a program. Jumps are expensive operations

that disrupt the efficiency gained by pipelining on superscalar CPUs. Tracing based methods are

designed to avoid unnecessary jumps. If a dominant trace within the control flow graph (CFG)

of a loop can be established then all effort should be invested in optimising that dominant trace.

Dynamo [13] is the original tracing JIT compiler. The work was not originally meant to speed up

dynamic languages but instead it presents a technique to re-structure compiled programs in such

a way that dominant traces can be executed without jumps. In a dominant trace, code is inlined

within traces and a trace is simply a sequential stream of instructions with some side-exits.

Trace-based JIT compilers yield especially good results when applied to dynamically typed-

languages [44, 43]. The stream of consecutive instructions in a trace can be transformed to TSSA

(trace static single assignment) and optimised aggressively. The Tracemonkey JavaScript engine

[43] used in Firefox makes use of this technology. Further techniques have been implemented

to enhance the performance of Tracemonkey, namely trace stitching, blacklisting of traces that

often revert to the interpreter, nested traces and calling external functions.

Tracing JIT compilers switch between interpretation, compilation and execution of compiled

traces during runtime. Because of this, program execution jitters when a tracing JIT com-

piler pauses to compile a trace. Ha et al. [50] implement a concurrent tracing JIT compiler

for JavaScript. While the program is interpreted on one thread, another thread compiles parts of

it. When a trace is compiled, the compiled version is executed. In such an implementation, the

challenge is seamlessly transferring the control from the interpreter to the compiled code. The

advantage of a multithreaded JIT compiler is that more cores are utilised and that the program

can execute without pausing between compilation and interpretation.

Our implementation of preemptive type checking as described in Chapter 6 statically analyses

the structure of a running program at runtime. Therefore, our implementation performs type

inference and program transformation at runtime in a similar way to a traditional JIT compiler.

2.3 Gradual type systems

In this section we discuss combinations of static and dynamic typing disciplines that enable

statically typed code to interact with dynamically typed code and vice versa. We summarise the

presented techniques and compare these with each other and also with our work. These type

systems are often referred to as gradual type systems. Several languages in use today can be

considered gradually typed languages. These include Boo [31], TypeScript [72] and even Scala

[79], C# [15] and Java [88].

Chapter 2 Background and literature review 25

2.3.1 Dynamic types

The initial work combining static and dynamic typing focused on increasing the degree of dy-

namic typing in statically typed languages; for example, Abadi et al. [5] introduced a dynamic

type Dyn to model finite disjoint unions or subclassing in object-oriented languages. They ar-

gue [5] that finite disjoint unions (C, Algol68) or tagged variant records (Pascal) are a finite

version of Dyn. A typical object-oriented language has subclasses and these can be thought of

as infinite disjoint unions and are equivalent to Dyn. Abadi et al. shed light on the uses of the

dynamic types at that time, e.g., inter-process communication. In the type system proposed by

Abadi et al. [5], an explicit injection construct (dynamic) is used when a statically typed value

is used within a dynamically typed expression. This casts a value to the type Dyn by adding

its type-code at runtime. An explicit projection construct (typecase) is also available. The

use of dynamic types is therefore constrained, i.e., values of type Dyn can only be used in a

typecase-construct. This is similar to a switch statement that given an argument, dispatches

on the types given to the construct. Dynamic types also appear in quasi-static typing [105].

The outcome from a quasi-static type checking process indicates in some cases whether a pro-

gramme is guaranteed to raise a type error, or guaranteed not to. In other cases however, the

outcome would be ambivalent, which means that the program might raise a type error.

The type Dyn also appears in gradual typing [96, 97, 98], which also allows dynamically typed

and statically typed code to commingle. The authors suggest that dynamically typed programs

are statically typed programs where the static type of any term is of type Dyn. As opposed to

the type system by Abadi et al. [5], injection and projection are automated in gradual typing

[98]. In gradual typing the notion of type consistency is introduced. Type consistency, denoted

by v, is a reflective, symmetric but non-transitive relation on types. For example, Int v Int

and Int 6v Str. However, the Dyn type is statically consistent with any possible type. For

example, Int v Dyn and Int → Dyn v Int → Int. Therefore, anything can be implicitly cast

to Dyn and Dyn can be implicitly cast to any other type [96, 97, 98]. This process does not use

subtyping, which contrasts with the approach used in quasi-static typing [105]. In the latter, the

type Dyn sits on both the top and the bottom of a subtype lattice. Since the subtyping relation is

transitive, the lattice collapses to one point and every type is a subtype of every other type [98].

The type system therefore does not reject any program. Therefore in gradual typing, the notion

of a non-transitive type consistency relation is a key improvement compared to previous type

systems.

Inspired by gradual and soft typing, like typing [117] is yet another way to integrate dynamic

and static typing. In like typing, values can be of type Dyn and can also be of any static type

C. Any operation on objects of type Dyn are type checked at runtime. The like typing system

however is different from gradual typing because it has intermediary types between Dyn and the

static types. A variable can be declared as like C, where C is a static concrete type. Variables

declared with this type are checked statically within their scope. Runtime type checking can

also occur as these variables may be bound to values of type Dyn. Therefore, uses of variables

26 Chapter 2 Background and literature review

of type like C are checked statically, but whenever another variable of any type is assigned to

a variable of type like C, the conformance to C’s interface is checked dynamically. Therefore,

if a variable p is declared to be like C, the type checker statically checks that all operations

on variable p, such as method invocations on p, conform to the interface of C. For example, if

C has a method foo but not a method bar, then p.foo() is valid and p.bar() is statically

rejected. Declaring p to be of type like C is a static guarantee that it will be used as a C

so instead of checking at runtime, one can simply do a static check [117]. Assignments to p

however require a runtime check.

2.3.2 Usage and evaluation

The use of dynamic types in traditionally statically typed languages has seen an increase. For

example Boo [31], TypeScript [72], Scala [79], C# 4.0 [15] and Java 7 [88] are modern pro-

gramming languages that have recently gained momentum and support the inclusion of dynamic

types. Bierman et al. [15] describe a type checking process for a variant of C# with type Dyn

called FC#
4 . This language is formalised, and a conversion process from this language to another

C# language variant (C#
CLR) is presented. In the latter, type information has to be made more

explicit than in the former and the Dyn type is translated to object. Explicit conversions are

used to turn an object to any other type. The translation process itself is type-correct, i.e., any

resulting C#
CLR code is well typed.

In general, the advantage of gradual typing is the flexibility offered to the programmers in pro-

viding them the choice of either static or dynamic typing. This choice is available for each term

in a program. Type safety is always preserved – this can be guaranteed statically in annotated

code and during runtime in unannotated code. Gradual typing is typically implemented by wrap-

ping a value with a dynamic type whenever it is implicitly cast to a particular interface. This

verifies that any subsequent operations on this value respect the target type’s contract. A Python

implementation of gradual typing is available [111], however the implementation seems to only

type check explicitly annotated arguments of functions at runtime.

It has been noted [117] that even the presence of a single wrapper for any value is likely to

slow down the execution of a program. Values need to remain wrapped until these are garbage

collected. This is because any side-effects can violate the wrapped value’s contract [117]. There-

fore, any operation on this value can fail at runtime. Wrappers also have to be manipulated at

runtime, thus preventing any compiler optimisations as the compiler has to emit code that as-

sumes the presence of wrappers everywhere [117].

Gradual typing, like typing and preemptive type checking all aim to find type errors earlier

than dynamic typing. The problem of like typing is that it is hard for a programmer to learn the

intricacies of the type system. As in gradual typing, the programmer has to learn the differences

between dynamic and static types. However, yet another level of type complexity is added in

like typing. As in gradual typing, like typing requires that the programmer annotates at least

Chapter 2 Background and literature review 27

part of the program to benefit from it. An advantage of like typing over gradual typing is that

if a variable is declared as like C rather than Dyn, and if this variable is assigned with a value

that does not respect C’s interface then the error is raised during the assignment rather than when

the variable is used. In preemptive type checking, this typically happens as well. Furthermore,

in preemptive type checking type errors can be found at the earliest state during the program

execution, given the limitations of the flow sensitive analysis.

No type inference algorithms have been proposed for like typing. However, there are type

inferences for gradual typing [98, 84]. Unification based inference [98] can infer static types for

parts of the program that are statically typed. When unification fails, a dynamic type is assigned

to expressions. Unification is less suitable for use in an object-oriented language, and Rastogi et

al. [84] propose an alternative, and implement this for ActionScript.

The concept of blame was introduced in Henglein’s [54] work, where the mechanisms involved

in coercing dynamic types to static types and vice versa were formalised. Eiffel [71] provides

both statically checked types and dynamically checked assertions called contracts. The notion of

contracts reappears in Findler and Felleisen’s work [37]. In this case contracts serve as assertions

for higher-order functions. The term blame is used in this work, which refers to the origin of

a contract violation. In the case of gradual typing, a contract violation is a type error. Tobin-

Hochstadt and Felleisen introduce migratory types [108]. This work presents a method whereby

a program written in an untyped language can be gradually migrated to a typed version of the

same language. This happens by gradually annotating certain modules. Constraints are inferred

from these annotations, which are transformed into contracts and finally the execution of the

program can assign proper blame in case of a type error. Similarly, Flanagan [38] introduces

hybrid types. The blame calculus has been subsequently refined [32, 99, 7] and it has also been

shown that statically annotated code cannot be blamed for runtime type errors [112].

None of the type systems discussed in this section can be described as flow sensitive, hence

these do not take into consideration the control flow of a program. Analysing the control flow

of a program [41, 94, 49] aids in getting a much more accurate type reconstruction. Also, the

effectiveness of these systems to flag type errors typically relies primarily on manually inserted

type annotations. There are type systems such as these that come with a type inference [98, 84],

however there are no implementations of these at present.

2.4 Soft typing

In this section we mainly describe soft type systems, a generalisation of static and dynamic

typing. Soft typing can be applied to dynamically typed languages and has little effect on the

runtime semantics of these languages in programs that do not raise type errors.

Soft typing [22] is an early attempt in reconciling both typing disciplines. As in other type

systems at the time [105, 5], it is described as a “generalisation of static and dynamic typing ...

28 Chapter 2 Background and literature review

that combines the best features of both approaches” [22]. In essence, this is a type system where

the type checker implicitly converts a dynamically typed program into one that can be statically

typed. It does this by inserting explicit runtime type checks (also called narrowing functions)

around the arguments of primitive operations [22]. Since the inserted type checks are explicit,

a programmer can review these to ascertain that they hold during the execution of the program.

Since the dynamically typed program has been effectively transformed into a statically typed

program, compilers can then generate more efficient code of softly typed programs.

Soft typing does not take into consideration assignments [22], however there is other work [52]

that can be leveraged to add support for assignments. There are two guiding principles in soft

typing [22]:

Minimal Text Principle: The program accepted by the system should be unannotated and dy-

namically typed. Otherwise, the program would be more verbose and cumbersome.

Minimal Failure Principle: The type system should be rich enough so that “typical” programs

can be statically type checked. Otherwise, if unnecessary runtime checks are introduced,

programmers would be more inclined to ignore them as most of them would be “false

positives”.

The first problem encountered when assigning types is when heterogeneous expressions are

encountered [22]. An example of such an expression is a ternary expression that can evaluate

to values of different types based on its predicate. In order to unify these expressions, union

types are introduced. For example, the union type of Int and Str is denoted as Int t Str. In soft

typing, this is encoded in Remi’s notation [85], which is an ingenious encoding of union types

that allows soft typing to reuse the standard Hindley-Milner type inference algorithm. There are

however shortcomings with this notation [54]. In soft typing there is no typing rule for induced

containments of union types (e.g., υ <: υ′, ν <: ν ′ ` υ t ν <: υ′ t ν ′), and the subtype rule

for recursive types is unsound [54]. The original work [22] focused on the functional subset of

Scheme and did not handle assignments, so that there is no notion of preemption. The extended

version of the practical soft type system for Scheme [116] handles assignments, but restricts

all occurrences of the assigned variables to have the same type, which makes it impossible to

successfully type check even the simple example from Figure 1.1.

In soft typing, the information gathered from the type inference is then used to insert narrowing

functions, functions that explicitly cast values from one type to another and raise an error if this

is not possible. Soft typing was extended with conditional types [8] in order to solve some of

the shortcomings of the original soft typing. Conditional types are types that depend on certain

predicates to be applicable and are introduced at control flow splits. The result is that the con-

straints introduced by the type inference can be analysed and solved and therefore fewer type

checks need to be inserted in the generated code. Soft typing has also been applied to Python

[90] and Erlang [78, 66]. Nystrom [78] also bases his type system on a data flow analysis but

Chapter 2 Background and literature review 29

does not distinguish between the notions of present and future use, introduced in preemptive

type checking (see Section 4.1). The success of these approaches has varied. Soft typing en-

ables faster program execution due to a reduction of runtime checks and the opportunity to use

the type information gathered as part of the analysis for more efficient compilation. Warnings

are issued in advance, indicating where and how type errors might occur. Wright and Cartwright

[116] developed a soft type system for R4RS, a modern scheme dialect. This type system is a

soft typing system that extends the Hindley-Milner static type system with union types and re-

cursive types. They claim that this typically eliminates 90% or runtime checks and consequently

programs run 10 to 15% faster. Despite this, soft typing cannot give a guarantee that type errors

will not occur. Also, any type error messages are of little use to the programmer [117, 36].

Soft typing has a reputation for being brittle [117] as a simple mistype in a method name will

insert an explicit runtime check that will always fail. An error is then raised at the moment

when this method is called. The types generated by a soft typing analysis are generally complex

and of little use to the programmer or to an IDE. Such types are subsequently hidden from the

programmer, making the model opaque [117]. Therefore, small changes to the code can have a

large impact on the runtime performance [117].

A generalised and related concept is that of pluggable type systems. These type systems are

“neither syntactically nor semantically required, and have no effect on the dynamic semantics

of the language.” [19]. The notion of pluggable type systems is summarised by Bracha [19].

Since preemptive type checking does not affect the semantics of µPython in runtime executions

that terminate without raising type errors (Section 5.2) and no type annotations are required, we

consider our type system to be a pluggable one. Soft typing can also be considered a pluggable

type system [19].

There are similarities between soft typing and preemptive type checking on many levels. In

both our work and in soft typing, type checks are inserted into the user’s code. In soft typing

these type checks are inserted in a function’s argument, if needed. Just like dynamic typing, a

type error is only raised at the last possible moment. In contrast, preemptive type checking is

guaranteed to raise a type error at an earliest point. Instead of unification, we use the information

from different flow sensitive type analysis to reconstruct an approximation of the runtime type of

any variable at any point throughout a program’s execution and what its value will be eventually

used as at a future point.

2.5 Static type inference for dynamically typed languages

The techniques described in this section are commonly described by their authors to be ap-

plicable to dynamically typed languages. However, this is not really the case. Most of these

techniques rely on static type inference and thus impose a statically typed semantics to the lan-

guages they are being applied to. Type inference is used to find type errors in dynamically typed

languages and to apply optimisations. We summarise the presented techniques and compare

30 Chapter 2 Background and literature review

these with each other and also our work. An important issue we will be discussing is the set of

restrictions that are placed on these languages to enable type inference.

MetaML An interesting observation we can make from the type systems presented in this sec-

tion is that it is claimed that a reason why type inference is deemed to be tricky for dynamically

typed languages is the fact that such languages often have unrestricted metaprogramming fea-

tures. Type inference can be implemented in metaprogramming languages, as can be seen in

languages such as MetaML [92, 104]. Metaprogramming is restricted in this language. For

example, the object bracket and escape notation is used to generate code rather than strings. In

addition, an important restriction is placed on code fragments, namely these should always be

lambda abstractions. Thus the generated code snippets can be safely typed.

Python and Ruby A completely different approach to statically type check languages with

metaprogramming features is presented in RPython [10], a statically typed subset of the Python

language. All metaprogramming features (including eval and metaclasses) may be used during

the initialisation of the Python classes. In languages such as Python or RPython, even determin-

ing which file is imported when an import statement is executed can be undecidable.

In RPython, metaprogramming features cannot be used during the running of the program.

RPython also rejects programs where types cannot be statically resolved. It can therefore be

compared with a statically typed version of Python. A similar attempt to give a statically typed

semantics to a dynamically typed language is Diamondback Ruby (DRuby) [41]. DRuby also

accepts type annotations, which help the type inference. Given its dynamic nature, DRuby can

only give warnings about potential type errors. It does not catch all type errors and sometimes

raises type errors for programs that work well. DRuby’s static type system is elaborate and

supports features such as union and intersection types, subtyping, object types, parametric poly-

morphism and mixins. The type inference algorithm is also flow aware.

Unlike RPython, DRuby does not support metaprogramming features such as eval. Furr et

al. also developed PRuby [40], an extension to DRuby. PRuby tries to address some of the

shortcomings of DRuby, related to metaprogramming. Determining the type of the result from

functions such as eval is undecidable if eval accepts arbitrary strings. However, by profiling

a running Ruby program, a sample of strings which are passed to eval and similar functions

can be gathered. PRuby then transforms the program into one that does not make use of these

features. The resulting transformed program is statically checked using DRuby. DRuby is also

used in a statically typed implementation of Ruby on Rails (RoR) [9]. This works by transform-

ing RoR applications into plain Ruby. The transformation avoids the use of metaprogramming

features and the resulting application is then type checked using DRuby.

JavaScript. Features of JavaScript that make type inference difficult include the use of proto-

types instead of classes, first class functions and weak, dynamic typing. Different type systems

have been proposed for JavaScript [11, 106]. Anderson [11] proposes a structural type system

[80] for a subset of the JavaScript language JS0. This subset excludes prototypes and first-class

functions. This type inference algorithm allows the dynamic addition of attributes to JavaScript

Chapter 2 Background and literature review 31

objects. However sophisticated, this type system cannot be applied to Python, as the class and

object creation mechanism is much more dynamic than in JavaScript. Also, no consideration is

made of control flow and state and therefore simple sorting functions from the Python standard

library cannot be adequately type checked [49]. Thiemann [106] proposes a type system where

a type is described by its base type and its features (such as members). Although a type infer-

ence mechanism is not proposed, an implementation is available. More recently, a semantics for

the JavaScript language has been formalised [48], although no type inference mechanism has

been proposed. Recency types [53] deal with ad hoc object initialisation patterns, i.e., objects

can be created at one point and members assigned dynamically. In order to deal with this, only

“contexts” of linear instruction sequences that are placed between special labels are considered.

In these contexts, an object is instantiated and its fields are assigned. These labels that delineate

the contexts are referred to as MASKk expressions. These labels are automatically placed by the

system, although not enough detail is given on how the placing of these MASKk expressions is

determined. The concept of a recency type is similar to present types in preemptive type check-

ing. Present types are more sophisticated as these can change throughout linear interprocedural

flows of execution, although preemptive type checking does not support objects yet. Similarly,

Guha et al. introduce a type system where control flow and state is taken into consideration [49].

This enables typing of programs that make use of idioms [49] such as heap-sensitive reason-

ing, dynamic dispatch and type tests. The type system is modelled for a simple semantics for

JavaScript [48]. Similar to our approach, the type system supports joins and ordering. The type

environments are labelled, however these are simply program points and not abstractions of call

stacks as in our approach. There is also no distinction between present and future use types. An-

other interesting approach for type checking JavaScript involves introducing dependent types

[23]. In this approach an SMT solver is employed to check the type derivations, which are

derived for all the values present in the program.

Scheme. Felleisen and Tobin-Hochstadt [109] propose the notion of occurrence typing for

implementing a statically typed version of Scheme. A translation of the simple example in

Figure 1.1 is statically rejected by this system. Bigloo [91] is another statically typed subset of

the Scheme language that supports optional type annotations. These type annotations are written

as assertion-style contracts which are constraints on procedures. These constraints are used to

generate more efficient code when the compiler can prove they are correct. Similar to gradual

typing, these are turned into runtime checks when the compiler cannot prove them correct.

Smalltalk. Strongtalk [20] is a statically typed subset of Smalltalk with features such as

polymorphic signatures, protocol based inheritance, generics and parametric polymorphism.

The language also supports the typecase construct, where runtime type checks are presumably

carried out. This work does not however define a formal type system or describe how omitted

type annotations are treated.

Erlang. Marlow and Wadler [66] propose a type system which supports recursive types and

subtyping. Programs are not accepted if matching or case expressions are not exhaustive [78].

Therefore, only a subset of the language is supported.

32 Chapter 2 Background and literature review

SELF. Agesen [6] proposes a type inference mechanism for SELF. This inference mechanism

works by generating constraints and unifying these constraints to obtain the desired type infor-

mation.

2.6 Control flow analysis

Control flow analysis is generally the first step of any form of non-trivial program analysis.

These include variable elimination and, more importantly, flow sensitive type inference, as in

preemptive type checking. Control flow analysis is trivial in simple imperative languages but

much harder in a higher-order languages, such as Scheme and Python. In these languages,

functions are first class citizens. We see that the top five languages currently in use [3] allow

functions to be passed around as arguments to functions. Indeed, most of the languages currently

in use on production systems (C, C++, Java, C#, PHP, Ruby, JavaScript, etc...) are higher-order

languages. It is also argued [73] that all object-oriented languages are implicitly higher-order,

because method invocation is resolved dynamically – the invoked method depends on the type

of the object that is present at the invocation point.

If function calls are dynamically bound at run time, statically determining which function is

actually called is undecidable. Classic data-flow algorithms therefore cannot be used, because

it is presumed that an interprocedural control flow graph is statically computable. An over-

approximated CFG may still be computed through program analysis. This computation, how-

ever, requires type information in order to be precise. We therefore have a chicken and egg

problem: inferring type information requires building a control-flow graph, and vice versa. In a

language where functions are passed as arguments, such as in Scheme, the target of a function

call may not be explicit, for example: (lambda (f) (f x)). Therefore, a control flow

analysis must take into consideration the argument applied to f and also where it is invoked.

Scheme also has control flow instructions such as call/cc, which make the control flow anal-

ysis harder.

Shivers’ work [93, 94] mainly deals with intra-procedural analysis. His framework works on

code that is translated to continuation passing style (CPS). This makes the structure of the code

uniform and simplifies the implementation of call/cc. Various functional language imple-

mentations convert code into CPS at some intermediate stage.

There are various orders of control flow analysis discussed [93, 94], but generally the simpler

the analysis, the faster but also the less accurate it is. The crucial step in these forms of analysis

is that of determining an overapproximation of functions bound to any variable. The simplest

analysis is the 0th-order control flow analysis or 0CFA. Suppose that throughout the execution

of a program, a variable x is bound to n different values vi=1, vi=2, ..., vi=n in n different con-

texts. Then, in 0CFA, evaluation of x in an environmental context i results in the entire set

v1, v2, ..., vn rather than one vi. 0CFA analyses the pure control-flow structure; it can determine

which functions are called from which call sites.

Chapter 2 Background and literature review 33

A more precise analysis distinguishes the dynamic frames allocated when a function is called

from two distinct call sites. This is called 1st-order control flow analysis (1CFA). So, if a

function is called from different call sites, its variables are bound in different frames. All values

passed to the function from a given call site are merged, but values passed from different call

sites remain distinct.

Shivers designed the control flow analysis for CPS Scheme, a language that he also defines.

In order to find an exact control flow semantics, one can simply instrument the interpreter and

record the control flow while a program is being interpreted. This, however, is unfeasible as

programs may not terminate and several executions might produce different control flow graphs.

Considering all possible executions and joining all control flow graphs from every interpreta-

tion is therefore in-feasible. This is not only because the external environments are generally

uncountably infinite but also because a finite program can give rise to an unbounded number

of distinct environments. Shivers therefore defines an abstract control flow semantics, which

approximates the exact flow semantics and proves that this can be approximated.

Although some variants of k-CFA are intractable [95], this algorithm was adapted to other lan-

guages and representations [95] and also to other problems like CFA in OO-style programs [73].

Since our type inference depends on a control flow analysis, choosing the appropriate algorithm

can make a difference to the effectiveness of preemptive type checking.

2.7 Summary

In this chapter we have described the relevant background material, which includes type sys-

tems and type theory. We explained the different kinds of typing strategies in programming

languages. We compared and contrasted dynamically typed and statically typed languages. We

also looked at compilation techniques for dynamically typed languages, especially in the context

of JavaScript.

Finally, we explored related or competing concepts and strategies in type checking. These in-

clude combinations of static and dynamic typing, soft or optional typing, type inference and

control flow analysis in higher order languages.

Chapter 3

The µPython language

The Python language has been in development for more than 20 years and over that period a

great number of features and instructions were introduced. It is therefore useful to formalise

a core calculus of this language before formalising the type checking mechanism itself. It is

common practice [55, 102, 15] to simplify a real programming language or to define a small

calculus based on a real programming language. This makes it possible to experiment with the

language and perform rigorous proofs.

In this chapter we define µPython as a dynamically typed core language modelled on Python.

It is a bytecode-based language with dynamically typed variables and dynamically bound func-

tions. Although small, the language is still sufficiently expressive to require a rich static type

analysis.

We present the high-level syntax of µPython in Section 3.1. We omit its formal operational

semantics, as it is standard; also, our type analysis is exclusively performed at the bytecode

level and the high-level syntax is used only for illustrative purposes. This language is compiled

down to bytecode, which we define in Section 3.2. We also describe the compilation from the

source language into bytecode and how the bytecode is interpreted (Section 3.3). We try to

keep faithful to the spirit of the original Python language in source code, bytecode, compilation

and interpretation. In Section 3.4 we show an example µPython program, together with its

compilation and execution.

3.1 µPython source code

We define a syntax for our language in Figure 3.1. A line break or a semicolon is used to

separate statements, while indentation delineates blocks. µPython supports function definitions,

conditional statements, assignments and while loops. In µPython, expressions are either function

calls, constants or identifiers. Valid expressions are also valid statements.

35

36 Chapter 3 The µPython language

Statements:

s ::= def f(x) : s (function definition)

| return e (function return)

| e (expression)

| pass (empty statement)

| raise (exception)

| x = e (assignment)

| if e : s else : s (conditional)

| while e : s (loop)

| s; s (sequence)

Expressions:

e ::= x (variable)

| c (constant)

| e(e) (function application)

| intOp(e) (prime integer function)

| strOp(e) (prime string function)

| isInst(e, τ) (instance check)

Types:
τ ::= Int | Str | Bool | Un | Fn

Constants:
c ::= n | str | true | false | ∗ | U

Figure 3.1: Syntax of the µPython language

In µPython (as in Python), function definitions are simply assignments of anonymous functions

to variable names. Functions can be reassigned at any point and within any control flow structure

or scope. µPython supports higher order functions, where functions are first class citizens. For

simplicity, functions can only take zero or one arguments; functions with more arguments must

be curried. There are three built-in functions. isInst is a reflection operator to check the dynamic

type of an expression, and always returns a boolean. intOp and strOp represent prime integer

and string operations, which implicitly raise a type error if their argument is of the wrong type.

Note that conditional statements and function calls will also implicitly raise a type error when

their guard or function expressions do not evaluate to boolean or function types respectively.

This contrasts with the raise operation that will immediately raise an explicit exception error to

terminate execution.

We have a single namespace V that comprises both variable and function names and use the

metavariables x, y (respectively f , g) to denote names that are intended to represent variables

(respectively functions). In µPython, all variables have global scope. Figure 3.5 on Page 40

shows a sample µPython program.

Chapter 3 The µPython language 37

instr ::= LC c (load constant) | intOp
| LG x (load global) | strOp
| SG x (store global) | isInst τ
| JP n (unconditional jump) | raise
| JIF n (jump if false) |
| CF f (call function) |
| RET (return from call) |

Figure 3.2: The µPython bytecodes

3.2 µPython bytecode

Our type analysis is actually performed on the bytecode representation of µPython programs.

Since we are doing a just-in-time type analysis, which is invoked at runtime, we lose the syntax

of the program and can only retrieve the bytecode. An advantage of analysing bytecode is that

we leverage the work done by the bytecode compiler such as lexical analysis the identification

of variables as either locals or globals. We also do not need to implement features that are just

“syntax sugar”.

The bytecode (Figure 3.2) is based on a simplified machine model consisting of a store (for

mapping variables to constants), an integer-valued program counter and a single accumulator

register for calculations. The Python runtime contains an evaluation stack that is used as working

memory. µPython does not have an evaluation stack. We make use of a reserved variable called

tos , in the environment, instead of a stack. This works like an accumulator but has stack-like

properties. For example, this gets invalidated when read (pop) and takes the role of the top of

stack in the full Python language. In the actual implementation of our type inference, we fully

support an evaluation stack (Section 6.6). We use the metavariables u, v to range over names

including tos . Apart from the constants defined in Figure 3.1, lists of instructions can also act

as constants.

Similar to the high-level syntax, we choose a subset of actual Python bytecodes, albeit with

minor modifications, sufficient to represent the challenges involved with static type analysis in a

dynamically typed language. We reuse the namespace V for variable and function names but, in

order to model functions, we extend the set of constants to include constants of type Fn made of

finite sequences of bytecode instructions. For technical convenience we also add a constant U of

type Un and a non-deterministic boolean value ∗. We shall be referring to this reduced language

for any formal definitions.

Following our bytecode definitions, we informally describe the bytecode instructions as follows:

LC c – Loads the constant supplied as operand in the top of stack: tos := c.

LG x – Loads the value stored in a global variable into tos: tos := x. The name of the global

variable x ∈ V is supplied as the operand to the instruction.

38 Chapter 3 The µPython language

SG x – Stores the value held inside tos to a global variable supplied as operand. This consumes

tos and therefore tos becomes U. The name of the global variable x ∈ V is supplied as

the operand to the instruction.

JP n – Jumps unconditionally to the location supplied as operand: pc := n.

JIF n – Jumps to the location supplied as operand if the top of stack contains false value.

Consumes tos . Raises a TypeError if tos is not a boolean.

CF f – Calls function f , where f is a global variable. To execute this the machine finds the

sequence of instructions P mapped from f in the store and pushes this program on to the

call stack with program counter 0. Raises a TypeError if f is not a function.

RET– Returns from the function call by popping an element from the call stack. Then exe-

cution is resumed from the previous location found on the call stack. If the call stack is

empty, the execution is halted.

intOp – Consumes tos , i.e., tos becomes U, if the value in tos is an Int. Raises a TypeError if

tos is not an Int.

strOp – Consumes tos if the value in tos is a Str. Raises a TypeError if tos is not a Str.

isInst τ – Given a type τ , replaces the current tos with true or false depending on whether the

value in tos is of the type τ .

raise – Raises an assertion error.

We assume well-formed bytecode where jumps only refer to actual program locations other than

location 0 and every program has a RET-instruction at its final location.

3.3 Compiling and running µPython

We use the µPython source language primarily for examples, since our analysis is based on the

µPython bytecode. We therefore define a compiler that translates µPython source to labelled

bytecode. This is defined as a compilation operation C, which is defined inductively over the

structure of terms by the rules in Figure 3.3. These rules are applied in top-down order since

there are two overlapping rules for f(e) and e1(e2). In this case, we want to give precedence to

the former rule since it yields more optimal code.

The process of mapping labels l1 and l2 in the generated bytecode to bytecode offsets is not

specified but is straightforward. The translator also needs to generate a fresh name f for function

applications of the form e1(e2). An interesting rule is the one for creating function definitions

(C(def f(x) : s)). To compile the function definition, the function body s is compiled and its

bytecode is stored in f .

Chapter 3 The µPython language 39

C(x) = LG x
C(c) = LC c

C(f()) = CF f
C(f(e)) = C(e);CF f

C(intOp(e)) = C(e); intOp
C(strOp(e)) = C(e); strOp

C(isInst(e, τ)) = C(e); isInst τ
C(e1(e2)) = C(e1);SG f ;C(e2);CF f

C(def f() : s) = LC C(s);SG f
C(def f(x) : s) = LC [SG x;C(s);];SG f

C(return e) = C(e);RET
C(pass) = ε
C(raise) = raise
C(x = e) = C(e);SG x

C(if e : s1 else : s2) = C(e); JIF l1;C(s1); JP l2; l1 : C(s2); l2 :
C(while e : s) = l1 : C(e); JIF l2;C(s); JP l1; l2 : . . .

C(s1; s2) = C(s1);C(s2)

Figure 3.3: Compiler for µPython. Compilation operation C is defined inductively
over the structure of terms in the rules. Rules are applied in top-down order.

We formalise the semantics through rules for single execution steps of an abstract machine,

as shown in Figure 3.4. These are a direct formalisation of the informal description given in

the previous section. The states of the machine, State→, are one of the termination states

TypeError, Exception, or End, or of the form 〈Σ, S〉. The environment Σ is a mapping from

names, including tos , to constants and S is a call stack of 〈program, program counter〉 pairs.

For technical convenience, our machine initially performs an initialisation step. If we assume

that the machine begins in state 〈Σ0, ε〉 where ε is an empty call stack, the state is initialised to

ΣI , a store that contains mappings for built-ins and that maps all other names to U. We write

M for the initial, or main, program and Pn to refer to the bytecode instruction at location n in

program P . We write Σ(u) to denote lookup in Σ and Σ⊕ (u 7→ c) to denote the environment

Σ updated with the mapping u 7→ c. We also write Σ(u) : τ whenever Σ maps u to a constant

of principal type τ .

3.4 Example

Now that we have defined µPython, we present a simple program example in Figure 3.5. In

this program, a function f is defined, which performs an integer operation on variable x. The

program then branches non-deterministically. If the consequent branch is taken, x is assigned

to a string. If the alternative branch is taken, x is assigned to an integer. When f is called, an

integer operation is performed on x. This program raises a TypeError depending on the branch

taken at runtime.

40 Chapter 3 The µPython language

〈Σ0, ε〉 → 〈ΣI , 〈M, 0〉 :: ε〉
〈Σ, 〈P, pc〉 :: S〉 → End if Ppc = RET, S = ε
〈Σ, 〈P, pc〉 :: S〉 → 〈Σ, S〉 if Ppc = RET, S 6= ε
〈Σ, 〈P, pc〉 :: S〉 → 〈Σ⊕ (tos 7→ c), 〈P, pc + 1〉 :: S〉 if Ppc = LC c
〈Σ, 〈P, pc〉 :: S〉 → 〈Σ⊕ (tos 7→ Σ(x)), 〈P, pc + 1〉 :: S〉 if Ppc = LG x
〈Σ, 〈P, pc〉 :: S〉 → if Ppc = SG x

〈Σ⊕ (x 7→ Σ(tos))⊕ (tos 7→ U), 〈P, pc + 1〉 :: S〉
〈Σ, 〈P, pc〉 :: S〉 → 〈Σ, 〈P, n〉 :: S〉 if Ppc = JP n
〈Σ, 〈P, pc〉 :: S〉 → 〈Σ⊕ (tos 7→ U), 〈P, n〉 :: S〉 if Ppc = JIF n,Σ(tos) = false
〈Σ, 〈P, pc〉 :: S〉 → 〈Σ⊕ (tos 7→ U), 〈P, pc + 1〉 :: S〉 if Ppc = JIF n,Σ(tos) = true
〈Σ, 〈P, pc〉 :: S〉 → TypeError if Ppc = JIF n,¬Σ(tos) : Bool
〈Σ, 〈P, pc〉 :: S〉 → 〈Σ, 〈P ′, 0〉 :: 〈P, pc + 1〉 :: S〉 if Ppc = CF f,Σ(f) = P ′

〈Σ, 〈P, pc〉 :: S〉 → TypeError if Ppc = CF f,¬Σ(f) : Fn
〈Σ, 〈P, pc〉 :: S〉 → 〈Σ⊕ (tos 7→ U), 〈P, pc + 1〉 :: S〉 if Ppc = intOp,Σ(tos) : Int
〈Σ, 〈P, pc〉 :: S〉 → 〈Σ⊕ (tos 7→ U), 〈P, pc + 1〉 :: S〉 if Ppc = strOp,Σ(tos) : Str
〈Σ, 〈P, pc〉 :: S〉 → TypeError if Ppc = intOp,¬Σ(tos) : Int
〈Σ, 〈P, pc〉 :: S〉 → TypeError if Ppc = strOp,¬Σ(tos) : Str
〈Σ, 〈P, pc〉 :: S〉 → 〈Σ⊕ (tos 7→ true), 〈P, pc + 1〉 :: S〉 if Ppc = isInst τ,Σ(tos) : τ
〈Σ, 〈P, pc〉 :: S〉 → 〈Σ⊕ (tos 7→ false), 〈P, pc + 1〉 :: S〉 if Ppc = isInst τ,¬Σ(tos) : τ
〈Σ, 〈P, pc〉 :: S〉 → Exception if Ppc = raise

Figure 3.4: Semantics of the µPython Bytecode

def f():
return intOp(x)

if ∗ :
x =’42’

else :
x = 42

f()

Figure 3.5: A simple µPython example

We first go through the compilation process of the source program defined in Figure 3.5. This
is done by applying the compilation operation C, defined in Figure 3.3, inductively over the
program. We show this at each line, where we underline the parts that are going to be compiled

Chapter 3 The µPython language 41

on the following line.

C(def f() : return intOp(x); if ∗ : x = ’42’ else : x = 42; f())

= C(def f() : return intOp(x));C(if ∗ : x = ’42’ else : x = 42; f())

= LC [C(return intOp(x))];SG f ;C(if ∗ : x = ’42’ else : x = 42; f())

= LC [C(intOp(x));RET]; SG f ;C(if ∗ : x = ’42’ else : x = 42; f())

= LC [LG x; intOp;RET]; SG f ;C(if ∗ : x = ’42’ else : x = 42; f())

= LC [LG x; intOp;RET]; SG f ;C(if ∗ : x = ’42’ else : x = 42);C(f())

= LC [LG x; intOp;RET]; SG f ;C(∗); JIF l1;C(x = ’42’); JP l2; l1 : C(x = 42); l2 : C(f())

= LC [LG x; intOp;RET]; SG f ; LC ∗; JIF l1;C(x = ’42’); JP l2; l1 : C(x = 42); l2 : C(f())

= LC [LG x; intOp;RET]; SG f ; LC ∗; JIF l1;C(’42’);SG x; JP l2; l1 : C(x = 42); l2 : C(f())

= LC [LG x; intOp;RET]; SG f ; LC ∗; JIF l1; LC ’42’;SG x; JP l2; l1 : C(x = 42); l2 : C(f())

= LC [LG x; intOp;RET];SG f ; LC ∗; JIF l1; LC ’42’;SG x; JP l2; l1 : C(42);SG x; l2 : C(f())

= LC [LG x; intOp;RET]; SG f ; LC ∗; JIF l1; LC ’42’;SG x; JP l2; l1 : LC 42;SG x; l2 : C(f())

= LC [LG x; intOp;RET]; SG f ; LC ∗; JIF l1; LC ’42’;SG x; JP l2; l1 : LC 42;SG x; l2 : CF f

The labels in the bytecode program are now replaced with explicit offsets in the bytecode

instruction lists. The instruction RET is also appended to the end to mark the end of the program.

0

LC [LG x;
0

intOp;
1

RET
2

];
1

SG f ;
2

LC ∗;
3

JIF 7;
4

LC ’42’;
5

SG x;
6

JP 9;
7

LC 42;
8

SG x;
9

CF f ;
10

RET

For presentation purposes, we define this program as M and P f such that:

M = [
0

LC P f ;
1

SG f ;
2

LC ∗;
3

JIF 7;
4

LC ’42’;
5

SG x;
6

JP 9;
7

LC 42;
8

SG x;
9

CF f ;
10

RET]

P f = [LG x;
0

intOp;
1

RET
2

]

The semantics of µPython (see Figure 3.4) is defined over the bytecode. Each rule is a single

execution step of the abstract machine. We now show how every rule is applied, at every step.

On the right hand side, we include the instruction that is present at the top of the current call

stack in Ppc . The machine starts at state 〈Σ0, ε〉 and the first step is a bootstrapping step which

takes the machine to 〈ΣI , 〈M, 0〉 :: ε〉. This loads the main or initial program M together with

the offset of the first bytecode instruction (0) onto the call stack.

〈Σ0, ε〉 → 〈ΣI , 〈M, 0〉 :: ε〉 (LC P f)

→ 〈ΣI ⊕ (tos 7→ P f), 〈M, 1〉〉 (SG f)

→ 〈ΣI ⊕ (f 7→ P f)⊕ (tos 7→ U), 〈M, 2〉〉 (LC ∗)

→ 〈ΣI ⊕ (f 7→ P f)⊕ (tos 7→ ∗), 〈M, 3〉〉 (JIF 7)

42 Chapter 3 The µPython language

At this point, the jump depends on the actual value of ∗. This is a non deterministic boolean

value. We resume the execution of this example with the assumption that ∗ is false.

→ 〈ΣI ⊕ (f 7→ P f)⊕ (tos 7→ U), 〈M, 7〉〉 (LC 42)

→ 〈ΣI ⊕ (f 7→ P f)⊕ (tos 7→ 42), 〈M, 8〉〉 (SG x)

→ 〈ΣI ⊕ (f 7→ P f)⊕ (tos 7→ U)⊕ (x 7→ 42), 〈M, 9〉〉 (CF f)

→ 〈ΣI ⊕ (f 7→ P f)⊕ (tos 7→ U)⊕ (x 7→ 42), 〈P f , 0〉 :: 〈M, 9〉〉 (LG x)

→ 〈ΣI ⊕ (f 7→ P f)⊕ (tos 7→ 42)⊕ (x 7→ 42), 〈P f , 1〉 :: 〈M, 9〉〉 (intOp)

→ 〈ΣI ⊕ (f 7→ P f)⊕ (tos 7→ U)⊕ (x 7→ 42), 〈P f , 2〉 :: 〈M, 9〉〉 (RET)

→ 〈ΣI ⊕ (f 7→ P f)⊕ (tos 7→ U)⊕ (x 7→ 42), 〈M, 10〉〉 (RET)

→ End

Hence we have shown one possible execution and outcome of the program. This results in a

termination state End. The other outcome would have raised a TypeError.

3.5 Relationship to Python 3.3

In order to simplify the formalisation as much as possible, we cut down on the size of the

language through assumptions and simplifications of the original Python bytecodes as follows:

All variables are global. In standard Python, there are both local and global variables. There

are also variables that appear in certain scopes such as closures and object attributes. One of

the biggest challenge in Python and similar languages is that the types of global variables are

mutable at any execution point in the program.

No evaluation stack. As we mentioned already, we make use of a reserved variable called tos ,

in the environment, instead of a stack. This works like an accumulator. With this restriction in

place, only functions with zero or one arguments are supported. If a function that takes more

arguments is required, then we can simply make use of currying.

The argument to call function CF is the actual function name. In Python, the function called by

this instruction is pushed on the stack first. Then, the arguments are also pushed on the stack.

Since we no longer have a stack, we modify this bytecode instruction to include the function

name as its argument and the function’s argument is passed through tos .

No need for the make function instruction. In Python, a bytecode instruction MAKE FUNCTION

is available. This takes a code object on the top of the execution stack and transforms it into

a function. The code object encapsulates the bytecode. This instruction also takes an integer

argument which indicates how many arguments the function takes, and leaves a function in the

Chapter 3 The µPython language 43

top of the stack. In µPython, however, functions only take at most a single argument and are just

a list of bytecode instructions. We therefore do not need the MAKE_FUNCTION instruction.

Simpler constants. In µPython, constants are either strings, integers, booleans, or programs (lists

of bytecode instructions). Full Python has many more kinds of constants.

We have also shortened the names of our bytecode instructions.

3.6 Conclusion

In this chapter we have formalised a simple dynamically typed language called µPython. This

is modelled on a core subset of the Python language. We defined the syntax of the high-level

language and also the compiled bytecode. We then formalised a non-optimising compiler, which

compiles the source language to bytecode. The semantics of the language was formalised for

the bytecode. An example showing the source code, compilation and execution of a program

was also given in this chapter.

We shall use this language in the next two chapters. Our type inference algorithm and type

checking mechanism is defined on this core

Chapter 4

Type inference for µPython

This chapter contains a formal description of the type inference algorithms for µPython. We

mainly give a description of the type system and the rules of the type inference mechanism.

We also present proofs that show that the type inference algorithms are correct in terms of

correctness properties that we also define in this chapter.

We formalise our type inference algorithm for the µPython bytecode rather than source code.

Although it is common for programming language tools to work on bytecode, formalising of

type inference algorithms on a bytecode language is less common. Therefore the main reason

why we model bytecode is to remain faithful to the implementation, which performs a bytecode

analysis. Since our analysis is performed at runtime, we do not have the structure of the source

code and we can only retrieve the bytecode.

4.1 Types

A key characteristic of µPython as a dynamically typed language is that the types of variables

may change during execution. Therefore, to determine whether a type error may occur we need

to establish, for any given point in the program execution, two pieces of information: the type a

variable actually has and the type a variable may be used as in future. We call these the present

and future use types.

In the case of the present type, x : τ holds at a particular point if after executing the instruction at

that point, x contains a value whose type is τ . To establish this, we perform a traditional forwards

analysis over the execution points of the program; the present type of a variable depends on the

instructions that have previously been executed. Obviously the precise present runtime type of

a variable cannot be statically determined so our analysis uses an over-approximation of this to

45

46 Chapter 4 Type inference for µPython

determine the present types. We extend the grammar of types to be

τ ::= Int integer

| Str string

| Bool boolean

| Un uninitialised

| Fn function type

| ⊥ bottom type

| > top type

| τ t τ union type

In order to represent the different type possibilities for a given variable we make use of the

familiar concept of union types. These come equipped with a natural subtyping order. We

define the subtyping order inductively using the following rules:

τ <: τ
τ <: τ ′ τ ′ <: τ ′′

τ <: τ ′′
⊥ <: τ τ <: >

τ <: τ ′

τ <: τ ′ t τ ′′
τ <: τ ′′

τ <: τ ′ t τ ′′
τ <: τ ′′ τ ′ <: τ ′′

τ t τ ′ <: τ ′′

We note that types form a lattice. The join operation on two types τ , τ ′, for example, is simply

defined as the equivalence class of τ t τ ′. The partial order of the lattice is the least partial order

induced by the subtyping preorder. In order to define the meet operation, we do not need to

introduce a syntactic construct to the type grammar. Instead, we will define the meet operation

in Section 4.4 in terms of t for a finite number of type terms. A part of the type lattice is

illustrated in Figure 4.1, where ⊥ and > sit at the bottom and the top of the lattice respectively.

Two types of interest are Fn and Un. Fn is the type of any callable function while Un indicates

that the variable is currently unassigned, and is defined as the type of the constant U.

Dual to the analysis of present types we establish the future use type using a backwards analysis

so that the future use type depends on the next instructions that will be executed. In the case of

the future use type, for x : τ to hold at point s, x must have a type that is “compatible with” τ

before executing the operation at s. If it does not, the program will result in a type error, either

at s or at any point accessible from s. The future use types are primarily introduced by function

calls, but also by other instructions such as conditional jumps, which require the operand to be

a Bool. A type τ is “compatible with” another type τ ′ if it is possible to use a value with type

τ whenever we require a value of type τ ′. In µPython, this relation is captured by the subtype

relation. Looking at the present and future use types at every program execution point, it is

possible to determine whether a program will reduce to a TypeError. We can now note that

there is a relationship between > and Un. Un is the type of any variable that is not assigned

in the present type environment while > is the type of any dead variable in the future use type

environment.

Chapter 4 Type inference for µPython 47

>

..

Int t Str t Bool Int t Str t Un Int t Str t Bool ... Int t Un t Fn

Int t Str Int t Bool Int t Un ... Un t Fn

Int Str Bool Un Fn

⊥

Figure 4.1: Fragment of the type lattice, formed under the subtype operation.

4.2 Program execution points

Our type analysis establishes the type of any variable at any point. Since variables can change

type during execution, a naive idea of a program execution point might be a simple code lo-

cation. We must realise, however, that the variables in the outer scope of a function can have

different types according to where a function is called. Therefore, the entire call stack is im-

portant in determining the current types of any variable. In principle, program execution points

must therefore be full call stacks and the control flow graph (CFG) of a µPython program is

therefore a relation S → S′ between call stacks. This is unfortunate because, even for finite

programs, the CFG of all possible program execution points could then be infinite. This has

drastic consequences for a static analysis.

We address this issue by over-approximating the CFG via the simple means of truncating call

stacks. Specifically, given a call stack S, and an integer N ≥ 1, we write bScN to mean the

equivalence class of all call stacks whose prefix of length N is the same as that of the stack

S. We typically omit N as this is fixed throughout. We refer to these equivalence classes as

truncated execution points and it is clear that, for each program, they form a finite, truncated

CFG as follows:

bSc → bS′c if and only if S0 → S′0 for some S0 ∈ bSc, S′0 ∈ bS′c

We will use a shorthand notation in the remainder by writing s to mean bSc, s′ to mean bS′c,
etc. We will also make extensive use of the following two functions: given a truncated execution

point s we write prev(s) for the set of nodes from which s can be reached in the truncated CFG

of the program. Similarly, next(s) denotes the set of nodes which can be reached from s.

48 Chapter 4 Type inference for µPython

Although we do not formalise the process of constructing control flow graphs of execution

points, clearly this process is closely linked with abstract interpretation [27]. In this perspective,

our concrete state space is the set of program states 〈Σ, S〉, which is uncountably infinite. Our

abstract state space is the set of truncated execution points s. Therefore, the abstraction function

α can be naturally expressed as:

α(X) = {bSc | 〈Σ, S〉 ∈ X}

where X is a set of states State→. The concretisation function γ can be naturally expressed as:

γ(Y) = {〈Σ, S〉 | S = s :: ... ∧ s ∈ Y }

where Y is a set of truncated execution points.

When the µPython interpreter is started, it is started with an empty call stack. Thus the first

execution point is denoted as ε. At the heart of our analysis is the forwards/backwards traversal

of the truncated CFG using the prev(s) and next(s) functions in order to find the present and

future use types of variables. Functions prev and next return finite sets.

We assume that the set of execution points returned by prev contains all possible previous exe-

cution points of a given program execution point that could appear at runtime. This means that

for any state of a running program, if 〈Σ, S〉 → 〈Σ′, S′〉 then

s ∈ prev(s′) (4.1)

We similarly assume the same for next(s):

s′ ∈ next(s) (4.2)

In Figure 4.2, we have an illustration depicting the correspondence between program points and

stacks. In this figure, program states 〈Σ0, S0〉 and 〈Σ1, S1〉 are executed by a single step to

yield states 〈Σ′0, S′0〉 and 〈Σ′1, S′1〉 respectively, and S0 and S1 both truncate to s. However, the

truncations of S′0 and S′1 are s′0 and s′1 respectively. Therefore, next(s) has to at least contain

{s′0, s′1}.

The simplest way to truncate the call stack is to retain only the last element. In this case, this

is the currently executing function and program counter. The longer the truncated stack is, the

smaller the overapproximation of the previous and next program execution points will be and

the more precise the inferred types will be.

Chapter 4 Type inference for µPython 49

〈Σ0, S0〉 → //

b.c

��

〈Σ′0, S′0〉

b.c
��

s next(.) // ,,22 {s
′
0

s′1
}

〈Σ1, S1〉 →
//

b.c

OO

〈Σ′1, S′1〉

b.c
OO

Figure 4.2: An illustration of the correspondence between stacks and execution points,
where {s′0, s′1} ⊆ next(s).

4.3 Type inference

Since the types associated with variables depend on the points in the control flow, the inference

mechanism traverses the control flow graph. We propose a type inference mechanism that is

similar to symbolic execution of the program using an abstract semantics of µPython encoded

inside inference rules. These inference rules capture the present and future use types of a par-

ticular variable at a particular execution point. We start by defining type judgements that are

inductively defined relations between execution points, variable names and types. For example,

in the case of present types, the judgement has the form s ` u : τ . This denotes that u has type

τ after executing the instruction at s.

For inferring the present type of any variable or tos right after the execution point ε, i.e., just

before executing the code M , we introduce the following rule:

ΣI(u) : τ

ε ` u : τ
INIT

This rule effectively says that type of u is the type of the value appearing in the initial runtime

environment ΣI . One can note that we make reference to a runtime environment in the type in-

ference rules, which are typically designed for static analysis. This is because our type inference

algorithms are designed to be invoked at runtime and therefore we can use the type information

available in the runtime environment at the point that the inference algorithm is used. We now

introduce another rule for a subset of the µPython instructions. Note that the derivation in the

conclusion makes reference to type derivations in its premise:

s = 〈P, pc〉 :: ... Ppc ∈ {LC c, JIF pc′,RET}
si ` x :

⊔
τi for each si ∈ prev(s)

s ` x :
⊔
τi

PREV

This rule says that if the instruction at s is any one of {LC c, JIF pc′,RET}, then the present

type of a variable x at s is obtained by joining the present type of x at every execution point

si preceding s. The proof tree for this rule therefore spans through the control flow graph of

50 Chapter 4 Type inference for µPython

the program, and branches whenever there is a control flow join in the graph. Let us now apply

these rules on a small program M . In M , we load a non-deterministic boolean a number of

times until the value false is loaded, and exit:

M = [LC ∗;
0

JIF 0;
1

RET
2

]

The control flow graph of M is therefore:

ε // 〈M, 0〉 // 〈M, 1〉 //
??

〈M, 2〉

We can now attempt to infer the present type of x, which is not used in M , after executing the

instruction at execution point 〈M, 2〉. We utilise the two rules we have just defined for inferring

the present types for the µPython subset used in M . We also assume that the initial environment

ΣI maps everything to U. We build our tree by starting with the judgement 〈M, 2〉 ` x : τ , and

proceed to build the proof tree as follows:

ΣI(x) : Un

ε ` x : Un
INIT

...........

〈M, 1〉 ` x : Un t . . .
PREV

〈M, 0〉 ` x : Un t . . .
PREV

〈M, 1〉 ` x : Un t . . .
PREV

〈M, 2〉 ` x : Un t . . .
PREV

Unfortunately, we quickly discover that the structure of the tree will repeat itself due to the cycle

between 〈M, 1〉 and 〈M, 0〉:

ΣI(x) : Un

ε ` x : Un
INIT

ΣI(x) : Un

ε ` x : Un
INIT

..........

〈M, 1〉 ` x : Un t . . .
PREV

〈M, 0〉 ` x : Un t . . .
PREV

〈M, 1〉 ` x : Un t . . .
PREV

〈M, 0〉 ` x : Un t . . .
PREV

〈M, 1〉 ` x : Un t . . .
PREV

〈M, 2〉 ` x : Un t . . .
PREV

We need a way to break this cycle, which can occur in any program that has loops or recursion.

In order to address this, we introduce a mechanism called trails, which we explain in the next

section.

Chapter 4 Type inference for µPython 51

s = 〈P, pc〉 :: ...

ΣI(u) : τ

〈ε, T 〉 `p u : τ
pINIT

〈s, u〉 ∈ T
〈s, T 〉 `p u : ⊥pTRAIL

〈s, u〉 6∈ T Ppc = raise

〈s, T 〉 `p u : ⊥ pRAISE

〈s, tos〉 6∈ T Ppc = LC c c : τ

〈s, T 〉 `p tos : τ
pLC

〈s, tos〉 6∈ T Ppc = isInst τ

〈s, T 〉 `p tos : Bool
pINST

〈s, tos〉 6∈ T Ppc ∈ {SG x,JIF n, strOp, intOp}
〈s, T 〉 `p tos : Un

pUSE

Figure 4.3: Inference rules for the `p judgement (axioms).

4.4 Type inference rules and trails

We introduce trails in the type judgements for both present and future use types. The type

inference is therefore expressed using two inductively defined relations written as

〈s, T 〉 `p u : τ and 〈s, T 〉 `f u : τ

where s is a truncated execution point and T is a trail. A trail is a set of pairs 〈s, u〉 of truncated

execution points and variables. They represent the previously visited execution points (together

with the variables that triggered the visit) and are used to ensure termination of the inference.

This is explained in more detail later on.

Similar to the judgement in the preceding section, 〈s, T∅〉 `p u : τ (where T∅ is the empty trail)

denotes that u will have type τ after the current instruction has been executed. The judgement

〈s, T∅〉 `f u : τ denotes that the variable u is required to have type τ in order to execute the

instructions from the current instruction onward without raising a TypeError.

We now define the type inference rules with trails for both present and future use types. The

rules for this are given in Figures 4.3–4.6.

The axioms for inferring `p (cf. Figure 4.3) account for situations in which the present type is

fully determined by the current instruction. For example, after loading a constant (Rule pLC)

the accumulator is known to have the type of the constant that has just been loaded. The infer-

ence rules in Figure 4.4 all follow a shared pattern: the types of the relevant variables in each

previous state are calculated and the present type is the union of these. The relevant variables

are instruction dependent. For example, in Rule pSG1 for the instruction SG x the type of x

depends on the type of tos in the previous states.

Again, for the rules for `f we have axioms in Figure 4.5 and inference rules in Figure 4.6.

Many of the axioms assign a future use type of > to a variable. This type indicates that there

are no constraints on this variable and follows in cases where that variable is just about to be

52 Chapter 4 Type inference for µPython

s = 〈P, pc〉 :: ... 〈s, x〉 6∈ T Ppc = SG x
〈si, T ∪ {〈s, x〉}〉 `p tos : τi for each si ∈ prev(s)

〈s, T 〉 `p x :
⊔
τi

pSG1

s = 〈P, pc〉 :: ... 〈s, tos〉 6∈ T Ppc = LG x
〈si, T ∪ {〈s, tos〉}〉 `p x : τi for each si ∈ prev(s)

〈s, T 〉 `p tos :
⊔
τi

pLG1

s = 〈P, pc〉 :: ... 〈s, y〉 6∈ T Ppc = SG x x 6= y
〈si, T ∪ {〈s, y〉}〉 `p y : τi for each si ∈ prev(s)

〈s, T 〉 `p y :
⊔
τi

pSG2

s = 〈P, pc〉 :: ... 〈s, y〉 6∈ T Ppc = LG x
〈si, T ∪ {〈s, y〉}〉 `p y : τi for each si ∈ prev(s)

〈s, T 〉 `p y :
⊔
τi

pLG2

s = 〈P, pc〉 :: ... 〈s, u〉 6∈ T Ppc ∈ {RET, JP pc′,CF f}
〈si, T ∪ {〈s, u〉}〉 `p u : τi for each si ∈ prev(s)

〈s, T 〉 `p u :
⊔
τi

pRET/JP/CF

s = 〈P, pc〉 :: ... 〈s, x〉 6∈ T Ppc ∈ {LC c, JIF pc′, strOp, intOp, isInst τ}
〈si, T ∪ {〈s, x〉}〉 `p x : τi for each si ∈ prev(s)

〈s, T 〉 `p x :
⊔
τi

p*

Figure 4.4: Inference rules for the `p judgement.

overwritten (Rules fSET and fSG1). Hence, whatever is currently present in these variables is

irrelevant. Otherwise, the immediate uses are recorded in the type (Rules fJIF, fSTR and fINT).

Two interesting rules are fLG1 and fCF1. In these a variable is used but its contents remain

intact so there may be future uses also. In the case of fCF1, f has to be a function type and also

whatever it needs to be in the succeeding points. For this purpose we introduce a meet operation

on types, written u· . This is defined in the following rules, which are applied in top-down order:

τu· (τ1 t τ2) = (τu· τ1) t (τu· τ2)
(τ1 t τ2)u· τ = (τ1u· τ) t (τ2u· τ)

τu· > = τ >u· τ = τ

τu· τ = τ τ1u· τ2 = ⊥

We use trails of computations to prevent cycles in the proof tree when trying to infer the type of

a particular variable. Without trails, cycles would occur (see previous section) since some of the

rules for `p and `f are defined in terms of other derivations for `p or `f in the previous or next

execution points in a program. Since a program usually contains cycles in the control flow graph

Chapter 4 Type inference for µPython 53

s = 〈P, pc〉 :: ...

〈ε, T 〉 `f u : > fINIT
Ppc = RET

〈〈P, pc〉 :: ε, T 〉 `f u : > fEND
Ppc = SG x 〈s, x〉 6∈ T
〈s, T 〉 `f x : > fSG1

〈s, u〉 ∈ T
〈s, T 〉 `f u : ⊥ fTRAIL

Ppc = raise 〈s, u〉 6∈ T
〈s, T 〉 `f u : > fRAISE

Ppc ∈ {LC c, LG x, isInst τ}
〈s, tos〉 6∈ T

〈s, T 〉 `f tos : > fSET

Ppc = JIF pc′

〈s, tos〉 6∈ T
〈s, T 〉 `f tos : Bool

fJIF

Ppc = strOp
〈s, tos〉 6∈ T

〈s, T 〉 `f tos : Str
fSTR

Ppc = intOp
〈s, tos〉 6∈ T

〈s, T 〉 `f tos : Int
fINT

Figure 4.5: Inference rules for the `f judgement (axioms).

such as loops, these would also manifest themselves in the proof tree of a `p or `f judgement,

as these branches along splits/joins in the control flow graph.

However, whenever the current execution point and variable are already present in the given

trail, pTRAIL or fTRAIL are applied and the inferred type is ⊥. This is because no more type

information can be gained by passing through the same execution point looking for the type

of the same variable twice. If this trail entry is not present, the entry is added to the current

trail if another rule is applied. Now that we explained the role of trails, we recap the notation

〈s, T 〉 `p u : τ . This denotes that u will have type τ after the current instruction has been

executed, omitting all type information that can be obtained by considering the items in the trail.

The type inference algorithms encoded in our inference rules are clearly related to symbolic

execution, with some key variations. Our inference rules only relate one variable at a time with

each application. In the case of present types and whenever there is a control flow join, the

analysis is forked and the result from each is joined using t. In the case of future use types and

whenever there is a control flow split, the same happens as well. This helps collapse the state

space of the analysis. Another difference to symbolic execution is that we ignore the predicates

of conditional jump instructions. This is because we only look at one variable at a time and we

do not keep track of the actual possible values inside the variables, but only their type. Due to

this design, we also explore some unfeasible paths. Since it is not possible in general to statically

determine the iteration bounds in loops and recursion, we need a mechanism to minimise the

number of times the analysis iterates through the loops. In our case, we solve this problem using

trails.

It is worth noting that the trail sets T are finitely bounded. This is due to the fact that call

stacks are truncated to a fixed depth and that, for a given program, there are finitely many

code locations and finitely many variables. For a given program, we write TU to denote the

maximum trail containing all truncated execution point/variable pairs. Trails greatly facilitate

the termination proof in the next section. Furthermore, if the type system is extended such that

54 Chapter 4 Type inference for µPython

s = 〈P, pc〉 :: ... 〈s, x〉 6∈ T Ppc = LG x
〈si, T ∪ {〈s, x〉}〉 `f tos : υi for each si ∈ next(s)
〈si, T ∪ {〈s, x〉}〉 `f x : νi for each si ∈ next(s)

〈s, T 〉 `f x :
⊔

(υiu· νi)
fLG1

s = 〈P, pc〉 :: 〈P ′, n〉 :: ... 〈s, u〉 6∈ T Ppc = RET
〈si, T ∪ {〈s, u〉}〉 `f u : τi for each si ∈ next(s)

〈s, T 〉 `f u :
⊔
τi

fRET

s = 〈P, pc〉 :: ... 〈s, tos〉 6∈ T Ppc = SG x
〈si, T ∪ {〈s, tos〉}〉 `f x : τi for each si ∈ next(s)

〈s, T 〉 `f tos :
⊔
τi

fSG2

s ∈ 〈P, pc〉 :: ... 〈s, y〉 6∈ T Ppc ∈ {LG x,SG x}
x 6= y 〈si, T ∪ {〈s, y〉}〉 `f y : τi for each si ∈ next(s)

〈s, T 〉 `f y :
⊔
τi

fLG2/SG3

s = 〈P, pc〉 :: ... 〈s, f〉 6∈ T Ppc = CF f
〈si, T ∪ {〈s, f〉}〉 `f f : τi for each si ∈ next(s)

〈s, T 〉 `f f :
⊔

(τiu· Fn)
fCF1

s = 〈P, pc〉 :: ... 〈s, u〉 6∈ T Ppc = CF f u 6= f
〈si, T ∪ {〈s, u〉}〉 `f u : τi for each si ∈ next(s)

〈s, T 〉 `f u :
⊔
τi

fCF2

s = 〈P, pc〉 :: ... 〈s, u〉 6∈ T Ppc = JP n
〈si, T ∪ {〈s, u〉}〉 `f u : τi for each si ∈ next(s)

〈s, T 〉 `f u :
⊔
τi

fJP

s = 〈P, pc〉 :: ... 〈s, x〉 6∈ T Ppc ∈ {LC c, JIF n, intOp, strOp, isInst τ}
〈si, T ∪ {〈s, x〉}〉 `f x : τi for each si ∈ next(s)

〈s, T 〉 `f x :
⊔
τi

f*

Figure 4.6: Inference rules for the `f judgement.

the number of equivalence classes of types is no longer finite, the termination proof in the next

section would still hold.

In the previous section we showed an example, where we tried to infer present types but ran into

a cycle. We shall now use the rules defined in Figure 4.5 and Figure 4.6 to derive the future use

type of a variable f at 〈M, 0〉 for program M :

M = [CF f ;
0

LG f ;
1

intOp;
2

RET
3

]

Chapter 4 Type inference for µPython 55

Since there is no value that can be used both as a function and as an integer, we expect that the

future use type of f be ⊥. We proceed to build the proof tree, which starts with the judgement

〈〈M, 0〉, T∅〉 `f f : ⊥. We omit the control flow graph in this example, as there is no branching.

This is simply a sequence of ascending execution points.

〈〈M, 3〉, {.., 〈〈M, 2〉, f〉}〉 `f f : >
fEND

〈〈M, 2〉, {.., 〈〈M, 1〉, f〉}〉 `f f : >
f*
〈〈M, 2〉, {.., 〈〈M, 1〉, f〉}〉 `f tos : Int

fINT

〈〈M, 1〉, {〈〈M, 0〉, f〉}〉 `f f : Int
fLG1

〈〈M, 0〉, T∅〉 `f f : ⊥
fCF1

We note that as we go up the proof tree, the trail is updated with the last element derived in the

tree. For presentation purposes, we omit the previous elements from the trail. Note that the meet

operation is used in the conclusion of fCF1 on Fn and Int, and in the conclusion of fLG1 on Int

and >.

In the following sections we show that the type inference rules are correct and terminating.

4.5 Termination of type inference algorithm

Our first theorem states that the application of the type inference for a finite program produces

a finite proof tree. Since `p and `f are defined recursively, this property is not trivial.

Theorem 4.1 (Termination). The rules for judgements `p and `f produce finite proof trees.

Proof. We assume that there exists some infinite proof of 〈s, T 〉 `p u : τ or 〈s, T 〉 `f u : τ

and show that this leads to a contradiction. None of the rules in Figures 4.3 – 4.6 have infinite

branching since prev(s) and next (s) return a finite number of truncated call stacks. By König’s

lemma [62], an infinite tree with finite branching has to have an infinite path, which we call Π.

We proceed by analysing the structure of Π.

Clearly, Π cannot contain any of the axioms in Figure 4.3 and Figure 4.5. All other inference

rules in Figure 4.4 and Figure 4.6 inductively use either `p or `f judgements. We note however

that for any inductive use of any of the aforementioned rules, an element is added to the trail.

For example, in rule p*, 〈s, u〉 is added to trail T . This element 〈s, u〉 is not present in the trail,

as one of the preconditions of this rule is 〈s, u〉 6∈ T . Elements are never removed from the trail

but always inserted. This means that the size of the trail along Π is strictly increasing.

Since the trail is a finite set, with the maximal trail being TU , the size of the trail along all paths

must be bounded by |TU |. This contradicts the property that Π has strictly increasing trails.

Therefore there can be no infinite path and hence no infinite proof tree produced by the rules for

judgements `p and `f .

56 Chapter 4 Type inference for µPython

4.6 Soundness for present types

The notion of soundness for present types is relatively straightforward. Given a derivation

〈s, T∅〉 `p u : τ , we expect that the actual runtime type of the constant u after executing the

current instruction in s to be a subtype of τ . This is formally expressed in the next theorem.

Theorem 4.2. Consider the uninitialised state 〈Σ0, ε〉, which is executed n steps to yield an

environment Σ and a call stack S, i.e.,

〈Σ0, ε〉
n→〈Σ, S〉 (4.3)

Suppose that this state is executed in a single step, 〈Σ, S〉 → 〈Σ′, S′〉, to yield another state

〈Σ′, S′〉. Let the inferred type τp of variable u be obtained by the judgement 〈s, T∅〉 `p u : τp,

where s is a finite truncation of a stack S and T∅ is the empty trail, and let τr be the runtime

type, i.e., Σ′(u) : τr.

Then, the inferred type is an over-approximation of the runtime type, i.e.,

τr <: τp (4.4)

Proof. We proceed by induction on n.

Base case. For n = 0, we have 〈Σ, S〉 = 〈Σ0, ε〉, and hence s = ε. Since 〈Σ0, ε〉 can only

reduce to 〈ΣI , 〈M, 0〉 :: ε〉 in a single step, then 〈Σ′, S′〉 = 〈ΣI , 〈M, 0〉 :: ε〉. Therefore, we

need to show that (4.4) holds if we obtain our inferred type τp from 〈ε, T∅〉 `p u : τp and our

runtime type τr from ΣI(u) : τr. For 〈ε, T∅〉 `p u : τp the only possible rule used here is pINIT.

By this rule, we conclude that τp = τr. This means that (4.4) holds since the subtype operator

is reflexive.

Inductive case. We assume that the claim holds for some n > 0, i.e., when the inferred type

τp of any variable u is obtained by the judgement 〈s, T∅〉 `p u : τp and the runtime type τr is

obtained by the judgement Σ′(u) : τr.

We now show that the claim also holds for n+1. In particular, we consider the situation when the

program 〈Σ′, S′〉 is executed a further step, i.e., 〈Σ′, S′〉 → 〈Σ′′, S′′〉. In this case we obtain the

inferred type using the judgement 〈s′, T∅〉 `p u : τ ′p and the runtime type using the judgement

Σ′′(u) : τ ′r. We show that

τ ′r <: τ ′p (4.5)

by analysing all applicable preconditions and patterns for the `p judgement.

We start by noting that the pINIT rule is not applicable because this relies on the call stack being

empty. As n > 0, we know that s′ is non-empty because there is no step that yields an empty

Chapter 4 Type inference for µPython 57

stack, i.e., 〈Σ, S〉 6→ 〈Σ′, ε〉. We therefore do not need to consider these cases. pRAISE is also

not applicable because we cannot execute another step after reducing to a TypeError.

The pTRAIL rule is also not applicable because its precondition requires the variable u for

execution point s′ to be in the trail. Since T∅ is empty, we have that if 〈s′, u〉 6∈ T∅. For the

remaining rules, we can assume that the corresponding preconditions on the trail hold.

We start by analysing the cases that apply to the remaining axioms shown in Figure 4.3. We

only show the case for pLC, however the remaining cases all follow the same pattern.

Case pLC, i.e., u is tos , s′ has the form 〈P ′, pc′〉 :: ... and P ′pc′ is LC c..

In this case, the inferred type τ ′p is obtained using the judgement 〈s′, T∅〉 `p tos : τ ′p. By pLC,

τ ′p is such that c : τ ′p. In particular, τ ′p is a primitive type, i.e., not a union type. To get the

runtime type we consider the semantics of µPython when u is tos , s′ has the form 〈P ′, pc′〉 ::

... and P ′pc′ is LC c.. From this we see that Σ′(tos) is c and so τ ′r is such that c : τ ′r. From this,

and the fact that τ ′p is a primitive type, we can immediately conclude that τ ′p = τ ′r and thus (4.5)

holds as required.

We now focus on the recursive rules shown in Figure 4.4. The proofs for these cases follow the

same pattern and we only elaborate on one case.

Case pLG1. u is tos , s′ has the form 〈P ′, pc′〉 :: ... and P ′pc′ is LG x..

In this case, the inferred type τ ′p is obtained using the judgement 〈s′, T∅〉 `p tos : τ ′p.

By pLG1, we have τ ′p =
⊔
τi such that:

〈si, T ∪ {〈s′, tos〉}〉 `p x : τi for each si ∈ prev(s′)

for all si ∈ prev(s′). From (4.1), we know that at least one of the truncated call stacks re-

turned by prev is a truncation of the runtime call stack at the previous runtime step. Hence

s ∈ prev(s′). Let τp, τ ′′p be such that

〈s, T∅〉 `p x : τp and 〈s, T∅ ∪ {〈s′, tos〉}〉 `p x : τ ′′p

Since τ ′′p must be one of the τi joined together to compute τ ′p, we know that τ ′′p <: τ ′p and since

T∅ ⊆ T∅, we use Lemma 4.3 to conclude that

τp <: τ ′p

Recall that our assumption in the inductive hypothesis states that

τr <: τp

58 Chapter 4 Type inference for µPython

where τr is such that Σ(x) : τr. By using this assumption, our previous conclusion τp <: τ ′p and

by exploiting the transitivity property of the subtype operator, we know that

τr <: τ ′p

We now refer to the semantics of µPython in Figure 3.4 for this case. From this we know Σ(x)

is Σ′(tos). Hence, τr = τ ′r and therefore we conclude that τ ′r <: τ ′p as required.

The previous proof depends on the next two lemmas, which relate judgements with different

elements in their respective trails. For instance, consider τ derived using 〈s, T 〉 `p u : τ and τ ′′,

derived using 〈s, T ∪ {〈s′, v〉}〉 `p u : τ ′′. We intuit that τ ′′ <: τ . This is because in the case

of the proof tree deriving τ ′′, the rule pTRAIL is more likely to be applied. Indeed, we prove a

stronger property in Lemma 4.4. We now consider τ ′, derived using 〈s′, T ′〉 `p v : τ ′. In the

proof for the previous theorem, and in cases where a type is derived using any of the rules in

Figure 4.4, a pattern emerges. In these cases, throughout the proof we see that τ ′ = τ ′′ t . . .
(and hence τ ′′ <: τ ′) but we need to prove that τ <: τ ′. We do so in the next lemma.

Lemma 4.3 (Bounding). For any variables u, v, execution points s, s′, and trails T , T ′ such

that T ′ ⊆ T . We have that
〈s, T 〉 `p u : τ

〈s′, T ′〉 `p v : τ ′

〈s, T ∪ {〈s′, v〉}〉 `p u : τ ′′

(4.6)

and τ ′′ <: τ ′, then

τ <: τ ′ (4.7)

Proof. We proceed by induction on the size n of the set difference between the universal trail

TU and the actual trail, i.e., size(TU − T). The universal trail is defined as the trail containing

all combinations of 〈s, u〉 for all u, s. Therefore we prove that the above lemma holds for all n.

Base case. We start with n = 0, which means that size(TU − T) = 0. Since there is no

trail bigger than TU , T is the trail TU . We substitute T = TU into (4.6), and we rewrite our

judgements as:
〈s, TU 〉 `p u : τ

〈s′, T ′〉 `p v : τ ′

〈s, TU ∪ {〈s′, v〉}〉 `p u : τ ′′

The universal trail contains all possible trail elements. Therefore 〈s, u〉 ∈ TU and by pTRAIL
we conclude that τ = ⊥. This means that our claim τ <: τ ′ holds since ⊥ is a subtype of any

type.

Inductive case. We assume that the Lemma holds for some size(TU − T) = n, i.e., for any

variables u, v, execution points s, s′, and trails T , T ′ such that T ′ ⊆ T and size(TU − T) = n.

Chapter 4 Type inference for µPython 59

If
〈s, T 〉 `p u : τ

〈s′, T ′〉 `p v : τ ′

〈s, T ∪ {〈s′, v〉}〉 `p u : τ ′′

(4.8)

and τ ′′ <: τ ′, then

τ <: τ ′ (4.9)

We then show that it also holds for n + 1. For this, we choose two trail variables T ′′ and T ′′′,
where size(TU − T ′′) = n + 1, and T ′′′ ⊆ T ′′. This means that the number of elements in T ′′

is one smaller than the number of elements in T as defined in (4.8). In particular, we have to

show that for any variables u, v, execution points s, s′, and trails T ′′, T ′′′ such that T ′′′ ⊆ T ′′

and size(TU − T ′′) = n+ 1, and

〈s, T ′′〉 `p u : τ

〈s′, T ′′′〉 `p v : τ ′

〈s, T ′′ ∪ {〈s′, v〉}〉 `p u : τ ′′

(4.10)

and τ ′′ <: τ ′, then

τ <: τ ′ (4.11)

We proceed by analysing the proof of the judgement 〈s, T ′′ ∪ {〈s′, v〉}〉 `p u : τ ′′ by a case

analysis on the last rule (see Figure 4.3 and Figure 4.4) used in the proof.

Case pINIT, i.e., looking up a variable in the entry point of the program.

We have s = ε and we rewrite some of our judgements from (4.10) correspondingly as:

〈ε, T ′′〉 `p u : τ

〈ε, T ′′ ∪ {〈s′, v〉}〉 `p u : τ ′′

From the hypothesis of pINIT, we conclude that

ΣI(u) : τ

ΣI(u) : τ ′′

From this we can see that τ = τ ′′, which implies that τ <: τ ′′. Since our inductive hypothesis

states that τ ′′ <: τ ′, by transitivity we also have τ <: τ ′ as required.

Case pTRAIL.

In this case, 〈s, u〉 ∈ T ′′, i.e., the variable u for execution point s is already in the trail. If we

assume 〈s, u〉 is not 〈s′, v〉. 〈s, T ′′〉 `p u : τ becomes 〈s, T ′′〉 `p u : ⊥. Since τ is ⊥, then

τ <: τ ′ because ⊥ is a subtype of any type.

60 Chapter 4 Type inference for µPython

Now, if we assume 〈s, u〉 is 〈s′, v〉, we rewrite our judgements from (4.10) to:

〈s, T ′′〉 `p u : τ

〈s, T ′′′〉 `p u : τ ′

Since T ′′′ ⊆ T ′′, the original claim τ <: τ ′ holds according to Lemma 4.4.

Case pLC, u is tos , s has the form 〈P, pc〉 :: ... and Ppc is LC c.

We rewrite our judgements from (4.10) to:

〈s, T ′′〉 `p tos : τ

〈s′, T ′′′〉 `p v : τ ′

〈s, T ′′ ∪ {〈s′, v〉}〉 `p tos : τ ′′

From the hypothesis of pLC, we conclude that c : τ and c : τ ′′. Since τ and τ ′′ are primitive

types, τ = τ ′′ and since our hypothesis states that τ ′′ <: τ ′, then τ <: τ ′ as required.

All other axioms in Figure 4.3 follow the same pattern as this case.

We now look at the recursive rules in Figure 4.4. The proofs for these cases follow the same

pattern. We will only look at the case for pLG1 and omit the other cases.

Case pLG1.

In this case u is tos , s has the form 〈P, pc〉 :: ... and Ppc is LG x. and we rewrite our judgements

from (4.10) accordingly to:

〈s, T ′′〉 `p tos : τ

〈s′, T ′′′〉 `p v : τ ′

〈s, T ′′ ∪ {〈s′, v〉}〉 `p tos : τ ′′

By pLG1 τ =
⊔
τi and τ ′′ =

⊔
τ ′′i where

〈si, T ′′ ∪ {〈s, tos〉}〉 `p x : τi

〈si, T ′′ ∪ {〈s, tos〉} ∪ {〈s′, v〉}〉 `p x : τ ′′i

for all si ∈ prev(s).

Let T be T ′′ ∪ {〈s, tos〉}, then we can rewrite the above as

〈si, T 〉 `p x : τi

〈si, T ∪ {〈s′, v〉}〉 `p x : τ ′′i

for all si ∈ prev(s).

Chapter 4 Type inference for µPython 61

Note that since τ ′′ =
⊔
τ ′′i , then τ ′′i <: τ ′′, and since τ ′′ <: τ ′ by assumption, then τ ′′i <: τ ′

for each τ ′′i . Note also that 〈s′, T ′′′〉 `p v : τ ′ as part of our hypothesis. Furthermore note that

T ′′′ ⊆ T ′′ ⊆ T ′′ ∪ {〈s, tos〉} = T . The hypothesis in (4.8) all hold and size(TU − T) = n so

by the inductive hypothesis, τi <: τ ′ for each τi. Therefore τ =
⊔
τi <: τ ′ as required.

All other recursive cases follow the same pattern.

The next lemma states that with fewer elements in a trail we get a more general type.

Lemma 4.4. For any variable u, execution point s and trails T , T ′ such that T ′ ⊆ T , τ <: τ ′

where
〈s, T 〉 `p u : τ

〈s, T ′〉 `p u : τ ′
(4.12)

Proof. We proceed by induction on n, which we define as the size of the set difference between

the universal trail TU and the actual trail, i.e., size(TU − T). Therefore we prove that the above

lemma holds for all n.

Base case. We start with n = 0 so that T is the universal trail TU .

We substitute T with TU in the judgements (4.12):

〈s, TU 〉 `p u : τ

〈s, T ′〉 `p u : τ ′

Since 〈s, u〉 ∈ TU , by pTRAIL we can conclude that τ = ⊥. Hence our claim τ <: τ ′ holds as

required.

Inductive case. We assume that the Lemma holds for some size(TU − T) = n, i.e., that for all

variables u, execution points s and trails T , T ′ such that T ′ ⊆ T , τ <: τ ′ where

〈s, T 〉 `p u : τ

〈s, T ′〉 `p u : τ ′
(4.13)

We now show that it also holds for n+ 1. For this we choose trail variable T ′′, where size(TU −
T ′′) = n + 1 and some T ′′′ such that T ′′′ ⊆ T ′′. In particular, we show that for any variables

u, v, execution points s, s′, and trails T ′′, T ′′′ such that T ′′′ ⊆ T ′′ and size(TU − T ′′) = n+ 1,

τ <: τ ′ where
〈s, T ′′〉 `p u : τ

〈s, T ′′′〉 `p u : τ ′
(4.14)

We proceed by analysing the last rule used in the proof of 〈s, T ′′′〉 `p u : τ ′

Case pINIT, i.e., looking up a variable in the entry point of the program.

62 Chapter 4 Type inference for µPython

In this case s = ε, and we can therefore rewrite (4.14) as:

〈ε, T ′′〉 `p u : τ

〈ε, T ′′′〉 `p u : τ ′

From pINIT, we see that ΣI(u) : τ and ΣI(u) : τ ′ hold. Both τ and τ ′ are primitive types and

hence τ <: τ ′ as required.

Case pTRAIL, 〈s, u〉 ∈ T ′′, i.e., the variable u for execution point s is already in the trail, and

hence

τ is ⊥. Therefore τ <: τ ′ as required.

For the remaining cases we assume that 〈s, u〉 6∈ T ′′ and since T ′′′ ⊆ T ′′, we also have 〈s, u〉 6∈
T ′′′.

The proofs for the cases that match the remaining rules in Figure 4.3 follow the same pattern.

We only elaborate the case that matches rule pLC.

Case pLC, i.e., u is tos , s has the form 〈P, pc〉 :: ... and Ppc is LC c..

We rewrite our judgements from (4.14) as

〈s, T ′′〉 `p tos : τ

〈s, T ′′′〉 `p tos : τ ′

In this case we see that rule pLC tells us that c : τ and c : τ ′. Since τ and τ ′ are primitive,

τ <: τ ′ as required.

The proofs for the cases that match the recursive rules in Figure 4.4, all follow the same pattern.

We only elaborate the case that matches rule pLG1.

Case pLG1, i.e., u is tos , s has the form 〈P, pc〉 :: ... and Ppc is LG x..

We rewrite our judgements from (4.14) as

〈s, T ′′〉 `p tos : τ

〈s, T ′′′〉 `p tos : τ ′

By pLG1 τ =
⊔
τi and τ ′′ =

⊔
τ ′′i where

〈si, T ′′ ∪ {〈s, tos〉}〉 `p x : τi

〈si, T ′′′ ∪ {〈s, tos〉}〉 `p x : τ ′i
(4.15)

for si ∈ prev(s).

Since τ =
⊔
τi and τ ′ =

⊔
τ ′i , we show τ <: τ ′ by showing that τi <: τ ′i for all τi.

Chapter 4 Type inference for µPython 63

Let T be T ′′ ∪ {〈s, tos〉} and T ′ be T ′′′ ∪ {〈s, tos〉}. Then by rewriting (4.15) we have the

hypothesis (4.13), where size(TU − T) = n.

By the inductive hypothesis we have τi <: τ ′i for all τi, τ ′i as required.

4.7 Soundness for future use types

The correctness criteria for future use types are more subtle. The future use types describe

constraints on the future uses of a variable and we will use these constraints to report type errors

preemptively by raising type error exceptions. So, correctness in this case means that, supposing

we execute the program under a preemptively type checked semantics, if we raise a type error

exception then the same program running in the unchecked semantics would continue executing

to reach an actual type error. In addition, we must also allow for the possibility that the program

in the non-preemptive semantics could diverge before reaching the detected future error.

In order to formalise the above, we need to define the preemptively type checked semantics and

a predicate on states that holds whenever a future divergence or type error is guaranteed. We

begin by defining the diverge-error predicate coinductively:

Definition 4.5. A predicateR⇑ on 〈Σ, S〉 is called a diverge-error predicate if whenever 〈Σ, S〉 ∈
R⇑ then 〈Σ, S〉 → 〈Σ′, S′〉 ∧ 〈Σ′, S′〉 ∈ R⇑ or 〈Σ, S〉 → TypeError.

Let ⇑ be the largest diverge-error predicate. It follows that a state that is in a diverge-error

predicate cannot reach the state End or Exception.

We now define another predicate over 〈Σ, S〉, which holds whenever the future use types for all

variables subsumes the actual runtime type.

Definition 4.6. The state compatibility predicate StateComp on 〈Σ, S〉 holds if for all variables

u, the current runtime type of u is a subtype of the inferred future type for the execution point s

corresponding to stack S, i.e.,
Σ(u) : τr

〈s, T∅〉 `f u : τf

and τr <: τf .

The next theorem demonstrates that this simple predicate is sufficient for preemptive type check-

ing. In principle, if we had to implement a runtime environment that implements a weak ver-

sion of preemptive type checking, this could check whether StateComp holds at every execu-

tion step. Obviously, this is computationally expensive. We will see in the next chapter that

StateComp can be refined to make better use of static type information.

Theorem 4.7. If 〈Σ, S〉 6∈ StateComp, then 〈Σ, S〉 ∈ ⇑.

64 Chapter 4 Type inference for µPython

Proof. We use coinduction here by proving that the complement of StateComp is itself a

diverge-error predicate, i.e., if 〈Σ, S〉 6∈ StateComp then:

• Either 〈Σ, S〉 → TypeError.

• Or 〈Σ, S〉 → 〈Σ′, S′〉 and 〈Σ′, S′〉 6∈ StateComp.

If 〈Σ, S〉 6∈ StateComp, then there is a variable u for which its runtime type is not a subtype of

its future use type, i.e., τr 6<: τf such that

Σ(u) : τr

〈s, T∅〉 `f u : τf
(4.16)

We choose this u and consider the last rule used to infer the above `f judgement. We start by

looking at the axioms (see Figure 4.5).

In cases matching rules fSET, fEND, fRAISE and fSG1, we conclude that τf = >, which

means that

τr 6<: τf

cannot hold as there is no type τr such that τr 6<: >, and hence these cases cannot arise.

Another case that we do not need to consider is fTRAIL as this rule only applies to a non-empty

trail.

We now examine the remaining axioms, namely fJIF, fSTR and fINT. These follow the same

pattern, so we will use the case matching rule fJIF as an example.

Case fJIF, i.e., u is tos , s has the form 〈P, pc〉 :: ... and Ppc is JIF n..

In this case, τf = Bool. Therefore τr 6<: τf means that the type τr of the value held in tos before

the currently executing instruction is not a subtype of Bool. This means that ¬τr : Bool. From

the semantics of µPython (see Figure 3.4), if we execute the current instruction (a conditional

jump) and tos is not of type Bool, we get a type error, i.e.,

〈Σ, S〉 → TypeError

as required.

We now proceed to analyse the recursive rules in Figure 4.6. All cases, except fLG1 and fCF1
which we shall tackle later, follow the same pattern. We therefore elaborate the case for fJP and

omit the other cases.

Case fJP, i.e., s has the form 〈P, pc〉 :: ... and Ppc is JP n

We know from the reduction semantics that a unique 〈Σ′, S′〉 state exists such that 〈Σ, S〉 →
〈Σ′, S′〉, so it suffices to show that 〈Σ′, S′〉 6∈ StateComp for this 〈Σ′, S′〉.

Chapter 4 Type inference for µPython 65

The inferred type τf is obtained using the judgement 〈s, T∅〉 `f u : τf .

By fJP, τf =
⊔
τi such that:

〈si, T ∪ {〈s, u〉}〉 `f u : τi for each si ∈ next(s)

From our initial proof condition (4.2), we know that at least one of the execution points returned

by next(s) is a truncation of the runtime call stack S′. Hence s′ ∈ next(s).

Let τ ′′f be such that 〈s′, T∅ ∪{〈s, u〉}〉 `f u : τ ′′f . Since T∅ ⊆ T∅, we use our result from Lemma

4.8 below and conclude that

τ ′f <: τf t τ ′′f

where τ ′f is such that 〈s′, T∅〉 `f u : τ ′f .

Since τ ′′f is one of the types joined together to compute τf , we know that τ ′′f <: τf , and we can

therefore rewrite the previous relation as:

τ ′f <: τf

We combine this with the hypothesis τr 6<: τf , to see that τr 6<: τ ′f .

It only remains to consider the runtime type of u in Σ′. According to the semantics of µPython

(see Figure 3.4) for this case Σ′(u) is simply τr and so we can conclude that 〈Σ′, S′〉 6∈
StateComp as required.

The proof for cases fLG1 and fCF1 are more intricate. These also follow similar patterns, so we

will look at the case for fLG1.

Case fLG1, i.e., u is x, s has the form 〈P, pc〉 :: ... and Ppc is LG x.

Again, 〈Σ′, S′〉 exists and is unique so we choose this and prove 〈Σ′, S′〉 6∈ StateComp. The

inferred type τf is obtained using the judgement 〈s, T∅〉 `f x : τf . By fLG1, τf =
⊔
υi u· νi

such that:

〈si, T ∪ {〈s, x〉}〉 `f tos : υi for each si ∈ next(s)

〈si, T ∪ {〈s, x〉}〉 `f x : νi for each si ∈ next(s)

From our initial proof condition (4.2), we know that at least one of the execution points returned

by next(s) is a truncation of the runtime call stack S′.

Hence s′ ∈ next(s).

66 Chapter 4 Type inference for µPython

Let υ′′ and ν ′′ be such that

〈s′, T∅ ∪ {〈s, x〉}〉 `f tos : υ′′

〈s′, T∅ ∪ {〈s, x〉}〉 `f x : ν ′′

Given that T∅ ⊆ T∅, we use our result from Lemma 4.8 and conclude that

υ′ <: τf t υ′′ (4.17)

ν ′ <: τf t ν ′′ (4.18)

where υ′ and ν ′ are such that

〈s′, T∅〉 `f tos : υ′

〈s′, T∅〉 `f x : ν ′

We combine (4.17) and (4.18) into

υ′u· ν ′ <: (τf t υ′′)u· (τf t ν ′′)

which we can rearrange as

υ′u· ν ′ <: (υ′′u· ν ′′) t τf

Since (υ′′u· ν ′′) is one of the types joined together to compute τf , we know that (υ′′u· ν ′′) <: τf ,

and we can therefore rewrite the previous relation as:

(υ′u· ν ′) <: τf

We combine this result with τr 6<: τf , as stated in the hypothesis and conclude that τr 6<: (υ′u·
ν ′). Essentially this means that at least one of the following holds:

τr 6<: υ′

τr 6<: ν ′

From the µPython semantics for this case, we can conclude that Σ′(x) and Σ′(tos) are the same

as Σ(x) by executing a single step. Therefore τr is also such that

Σ′(tos) : τr

Σ′(x) : τr

Chapter 4 Type inference for µPython 67

Since τr 6<: υ′ or τr 6<: ν ′, the runtime type of tos or the runtime type of x is not a subtype of

its future use type.

We therefore conclude that 〈Σ′, S′〉 6∈ StateComp as required.

The next lemma is the future use types equivalent of Lemma 4.3. This lemma is used to relate the

type derived using a `f judgement with a trail T to the type derived using a `f judgement with a

trail that has an additional element to T . For instance, consider τ derived using 〈s, T 〉 `f u : τ ,

τ ′ derived using the judgement 〈s′, T 〉 `f u : τ ′ and τ ′′, derived using 〈s, T ∪ {〈s′, v〉}〉 `f
u : τ ′′. As in the case for present types, we know that τ ′′ <: τ ′. However, in the proof for the

previous theorem, and in cases where a type is derived using any of the rules in Figure 4.6, a

pattern emerges. In these cases, we get to a stage where τ = τ ′′t . . . and hence τ = τ tτ ′′t . . .,
but we need to prove that τ ′ <: τ t τ ′′. We do so in the next lemma, and this shows that when

one type derivation τ depends on a premise consisting of other type derivations τ ′′, then not

only is τ more general than τ ′′, but it is also more general than τ ′, i.e., τ ′′ derived the topmost

element of the trail removed.

Lemma 4.8 (Bounding). For any variables u, v, execution points s, s′, and trails T , T ′ such

that T ′ ⊆ T , then τ ′ <: τ t τ ′′ where

〈s, T ′〉 `f v : τ

〈s′, T 〉 `f u : τ ′

〈s′, T ∪ {〈s, v〉}〉 `f u : τ ′′

(4.19)

Proof. We proceed by induction on n, where as in Lemma 4.3, this is defined as the size of the

set difference between the universal trail TU and the actual trail, i.e., size(TU − T). Therefore

we prove that the above lemma holds for all n.

Base case. We start by proving the lemma holds for n = 0, which means that size(TU −T) = 0.

This means that T = TU and that 〈s, u〉 ∈ TU since the universal trail contains all possible trail

elements. By fTRAIL we conclude that τ ′ = ⊥ and therefore τ ′ <: τ t τ ′′ as required.

Inductive case. We assume that the Lemma holds for size(TU−T) = n, i.e., that for all variables

u, v, execution point s, s′, and trails T , T ′ such that T ′ ⊆ T , τ ′ <: τ t τ ′′ where

〈s, T ′〉 `f v : τ

〈s′, T 〉 `f u : τ ′

〈s′, T ∪ {〈s, v〉}〉 `f u : τ ′′

(4.20)

We then show that it also holds for n + 1. For this, we choose two trail variables T ′′ and

T ′′′, where size(TU − T ′′) = n+ 1, and T ′′′ ⊆ T ′′. In particular, we have to show that for any

variables u, v, execution points s, s′, and trails T ′′, T ′′′ such that T ′′′ ⊆ T ′′ and size(TU−T ′′) =

68 Chapter 4 Type inference for µPython

n+ 1, τ ′ <: τ t τ ′′ where
〈s, T ′′′〉 `f v : τ

〈s′, T ′′〉 `f u : τ ′

〈s′, T ′′ ∪ {〈s, v〉}〉 `f u : τ ′′

(4.21)

We proceed by analysing the last rule used to establish the judgement 〈s′, T ′′ ∪ {〈s, v〉}〉 `f u :

τ ′′.

It happens that most of these cases have a similar pattern to the cases in the proof of Lemma 4.4.

We shall therefore only cover the most difficult cases in this proof.

The cases for fTRAIL follow a similar pattern to the cases for pTRAIL in Lemma 4.4. This

means that we assume that in the following cases, 〈s, v〉 6= 〈s′, u〉 and 〈s′, u〉 6∈ T ′′.

Cases that match rules fSET, fEND, fINIT and fRAISE follow the same pattern so we look at

only one example.

Case fEND, i.e., s′ = 〈P, pc〉 :: ε and Ppc = RET

In this case τ ′′ is defined such that

〈〈P, pc〉 :: ε, T ′′ ∪ {〈s, v〉}〉 `f u : τ ′′

By fEND we conclude that τ ′′ is > and therefore τ ′ <: τ t τ ′′ as required.

Cases that match rules fJIF fSTR and fINT follow the same pattern, so we only look at one case.

Case fJIF, i.e., u is tos , s′ has the form 〈P ′, pc′〉 :: ... and P ′pc′ is JIF n.

In this case τ ′ is defined such that

〈s′, T ′′〉 `f tos : τ ′

and τ ′′ is defined such that

〈s′, T ′′ ∪ {〈s, v〉}〉 `f tos : τ ′′

By fJIF we conclude that τ ′ = Bool and τ ′′ = Bool. From this, we easily conclude that

τ ′ <: τ t τ ′′ holds as required.

The rest of the cases match the recursive rules in Figure 4.6. The proofs for these cases are all

similar to each other, with the most intricate being the case that matches fLG1.

Case fLG1, i.e., u is x, s′ has the form 〈P ′, pc′〉 :: ... and P ′pc′ is LG x.

Chapter 4 Type inference for µPython 69

We rewrite our judgements from (4.21) into

〈s, T ′′′〉 `f v : τ

〈s′, T ′′〉 `f x : τ ′

〈s′, T ′′ ∪ {〈s, v〉}〉 `f x : τ ′′

By fLG1, τ ′ =
⊔

(υ′iu· ν ′i) and τ ′′ =
⊔

(υ′′i u· ν ′′i), where υ′i, ν
′
i, υ
′′
i and ν ′′i are defined as follows

〈s′i, T ′′ ∪ {〈s′, x〉}〉 `f tos : υ′i

〈s′i, T ′′ ∪ {〈s′, x〉}〉 `fx : ν ′i

〈s′i, T ′′ ∪ {〈s′, x〉} ∪ {〈s, v〉}〉 `f tos : υ′′i

〈s′i, T ′′ ∪ {〈s′, x〉} ∪ {〈s, v〉}〉 `fx : ν ′′i

Let T be T ′′ ∪ {〈s′, x〉}. We rewrite the above to be

〈s′i, T 〉 `f tos : υ′i

〈s′i, T 〉 `fx : ν ′i

〈s′i, T ∪ {〈s, v〉}〉 `f tos : υ′′i

〈s′i, T ∪ {〈s, v〉}〉 `fx : ν ′′i

and apply the inductive hypothesis twice to obtain υ′i <: τ t υ′′i and ν ′i <: τ t ν ′′i for each i. We

see that

τ ′ =
⊔

(υ′iu· ν ′i) <:
⊔

(τ t υ′′i)u· (τ t ν ′′i) =
⊔
τ t (υ′′i u· ν ′′i)

= τ t
⊔

(υ′′i u· ν ′′i)

= τ t τ ′′

as required.

The next lemma is the future use types equivalent of Lemma 4.4. The next lemma follows the

same pattern to Lemma 4.4 and therefore we omit its details.

Lemma 4.9. For any variable u, execution point s and trails T , T ′ such that T ′ ⊆ T , then

τ <: τ ′ such that

〈s, T 〉 `f u : τ

〈s, T ′〉 `f u : τ ′

Proof. We proceed by induction, as in Lemma 4.4.

70 Chapter 4 Type inference for µPython

1 def f():
2 def f():
3 y=2
4 y=’a’
5 f()
6 f()

Figure 4.7: Functions can redefine themselves

1 def f():
2 y=’a’
3 if *:
4 f()
5 f()

Figure 4.8: Simple recursion

1 def f():
2 y=’a’
3 if *:
4 g()
5 def g():
6 y=3
7 if *:
8 f()
9 f()

Figure 4.9: Mutual recursion

4.8 Type inference examples

In these examples, we demonstrate the capabilities of the type inference to handle different usage

scenarios in dynamically typed languages. Figure 4.7 shows a short and strange example where

we have a function f defined in line 1 that redefines f at line 2 when this is called. It also sets

y with a string value (line 4). The first time f is called (line 5), y becomes a string value and f

is redefined. The second time f is called (line 6), y becomes an integer value. Since execution

points indicate the actual functions that have been called running up to the point, i.e., a truncated

stack, our type inference can therefore handle this test case with relative ease.

Figure 4.8 is an example that exercises simple recursion. Function f can call itself. Our type

inference manages to terminate and correctly infer the type of y as Str despite the fact that there

could possibly be infinite paths through the control flow graph. Although more information can

be revealed by going through a loop more than once, there is no more type information that can

be gained by going through the same location looking for the same information twice.

Figure 4.9 is another recursion example. In this example, f calls g while g calls f. The type of

y after calling f (line 9) is Str t Int.

In general there is no fixed number of times that a loop must be unrolled in order to compute

a fixpoint for a data flow analysis algorithm. Indeed, one can easily construct pathological

examples that require substantial unrolling of loops. These would look similar to Figure 4.10

Chapter 4 Type inference for µPython 71

1 x2=’’
2 x3=’’
3 x4=’’
4 x5=3
5 while *:
6 x1=x2
7 x2=x3
8 x3=x4
9 x4=x5

10 # type of x1 ?

Figure 4.10: Analysing this example requires going around the loop several times.

taken to the extreme (such as repeating the pattern indefinitely). Our trails however implicitly

determine a minimal the number of times that a loop needs to be explored for any variable. For

example, in Figure 4.10, if the type inference tries to determine the type of x1 at line 7, it would

then try to determine the type of x2 due to the instructions arising at line 3. Since the type

inference has not yet tried to determine the type of x2, the trail does not contain x2 in any entry.

The type inference will therefore go round the loop another time and another time for x3, x4

and x5. In total, the loop is covered five times. The present type of x1 at line 7 in this case is

Un t Str t Int.

4.9 Conclusion

In this chapter we have defined the most critical part of the type checking mechanism, the type

inference. The novelty of our approach comes from the separation between present and future

use types. The type information gathered from this analysis will be crucial to determine the

optimal points where to insert the type checking assertions in the original code.

Apart from formalising the type inference, we have also proved its termination and soundness.

These properties are extremely important for our type checking mechanism to be useful.

Chapter 5

Type checking and assertion insertion

In this chapter we leverage the type inference mechanism from the previous chapter and explain

how the inferred type information is used in preemptive type checking. We start by extending

the runtime semantics for the µPython bytecode, defined in Figure 3.4, such that programs are

executed using preemptive type checking. We prove correctness and optimality properties for

this semantics, which we call the checked semantics. We then present an algorithm for inserting

explicit type checks into a µPython program such that the program behaves like a program

running under a checked semantics when interpreted under an unchecked semantics. We also

illustrate the algorithms presented in this chapter on an example µPython program.

5.1 Checked µPython semantics

We now define an alternative semantics for µPython. In this semantics, type errors are raised at

the earliest point (given our optimality condition in Definition 5.7) at which it can be determined

that the execution will lead to a TypeError.

In principle, an interpreter can raise type errors earlier by using the StateComp predicate (Def-

inition 4.6). This would involve checking at every execution step whether the runtime type of

every variable is subsumed by its future use type. Naturally this is very computationally expen-

sive and the resulting interpreter would be too slow. Fortunately, we also have the capability

to statically compute present types, which are overapproximations of runtime types. There-

fore, we can use this information to reduce the number of runtime type checks that need to be

performed. In practice, present and future use types remain fairly consistent between adjacent

execution points. Therefore, if a runtime type check is necessary at one point, we want to avoid

repeating this at subsequent points if possible. As a first step towards defining a preemptively

type checked semantics for µPython, we refine StateComp into EdgeComp, a weaker version

that makes better use of statically determined type information. EdgeComp can be partially

evaluated statically and in many cases a result can be determined without accessing the runtime

environment Σ. In these cases, dynamic checks do not need to be performed.

73

74 Chapter 5 Type checking and assertion insertion

Definition 5.1. A relation EdgeComp on 〈s, s′,Σ′〉 holds if for all variables u, we can conclude

from
〈s, T∅〉 `f u : τf

〈s′, T∅〉 `f u : τ ′f

〈s, T∅〉 `p u : τp

Σ′(u) : τ ′r

(5.1)

that

τf = τ ′f or τp <: τ ′f or τ ′r <: τpu· τ ′f

Essentially this says that as the program moves from a state s to a state s′, then there is no error

to report if either (1) there is no change in the future use types, (2) the statically approximated

runtime type is a subtype of future uses, or (3) the actual new runtime type of a variable is within

the future use set (modulated by the present type). Clearly only (3) requires the inspection of the

runtime types and even then, where the meet τpu· τ ′f is ⊥, we know statically that the predicate

must fail as there are no constants of type ⊥. The predicate EdgeComp is used extensively in

our checked µPython semantics, as is the following predicate that allows type incompatibilities

to be propagated backwards through the CFG.

We have seen that in some cases EdgeComp can be partially evaluated with static information

inferred for a particular edge and we can statically conclude that this does not hold. In such

cases, we would like to preempt the type error whenever the current execution point goes through

such an edge. Furthermore, at points where all paths would lead to a point where a type error

can be preempted, we can raise a controlled type exception even earlier. We therefore introduce

a new predicate that makes this possible.

Definition 5.2. The fail edge predicate FailEdge is a least predicate that holds at 〈s, s′〉 if

s ∈ prev(s′) and either ∀Σ′ ·〈s, s′,Σ′〉 6∈ EdgeComp or {〈s′, s′′〉 | s′′ ∈ next(s′)} ⊆ FailEdge .

As an example, suppose that the inferred present type τp for a variable u is Int t Str and the

inferred future use type τ ′f is Bool and that τf 6= τ ′f . Thus τp is not a subtype of τ ′f and

τpu· τ ′f = ⊥. Since there is no primitive type that is a subtype of ⊥, then we can conclude that

EdgeComp does not hold for the given state. We can arrive to this conclusion without checking

the actual type τ ′r of u in the environment Σ′.

We denote the state space of the unchecked semantics by State→. Our checked semantics for

µPython makes use of a different state space, State99K (see Figure 5.1). The main difference

to State→ is that TypeError is not a valid element of State99K. This is because our checked

semantics does not raise a type error. Instead it detects these type errors earlier and raises

controlled exceptions (Exception). The state 〈Σ, S〉 can denote a state in either State→ or

State99K. However, when this state appears in context, it should be clear to which set it belongs.

The checked semantics is defined in terms of the original µPython semantics in Figure 3.4. A

crucial difference between the two is that the outcome of a single step can be different. In

Chapter 5 Type checking and assertion insertion 75

State99K ::= Exception preemptive type error exception
| End end state
| 〈Σ, S〉 environment and stack

Figure 5.1: Syntax of checked states

the original semantics, executing 〈Σ, S〉 by a single step can reduce to 〈Σ′, S′〉. However, in

the checked semantics, executing 〈Σ, S〉 by a single step can reduce to a preemptive type error

exception instead, i.e., 〈Σ, S〉 99K Exception.

Definition 5.3. The checked semantics is defined as a binary relation 99K on the set of states,

State99K comprised of 〈Σ, S〉 states, End, and Exception

〈Σ, S〉 99K End if 〈Σ, S〉 → End

〈Σ, S〉 99K Exception if 〈Σ, S〉 → Exception

〈Σ, S〉 99K Exception if 〈Σ, S〉 → 〈Σ′, S′〉 ∧ 〈s, s′,Σ′〉 6∈ EdgeComp

〈Σ, S〉 99K Exception if 〈Σ, S〉 → 〈Σ′, S′〉 ∧ 〈s, s′〉 ∈ FailEdge

〈Σ, S〉 99K 〈Σ′, S′〉 if 〈Σ, S〉 → 〈Σ′, S′〉 otherwise

Definition 5.4. A relationR≤ on State→×State99K, which relates only identical non-terminating

states (i.e., if 〈Σ, S〉R≤〈Σ1, S1〉 then Σ = Σ1 and S = S1) is called an error-preserving simu-

lation if the following holds:

· 〈Σ, S〉 6→ TypeError

· If 〈Σ, S〉 → End then 〈Σ, S〉 99K End.

· If 〈Σ, S〉 → Exception then 〈Σ, S〉 99K Exception.

· If 〈Σ, S〉 → 〈Σ′, S′〉 then either

· 〈Σ, S〉 99K 〈Σ′, S′〉 ∧ 〈Σ′, S′〉R≤〈Σ′, S′〉 or

· 〈Σ, S〉 99K Exception ∧ 〈Σ′, S′〉 ∈ ⇑

Let . be the largest error-preserving simulation.

5.2 Maintaining error preserving simulations

In this section we prove that programs running under preemptive type checking can never raise a

TypeError. We also show that under preemptive type checking, if a program raises a controlled

exception Exception, then if the same program is run using the original semantics, the program

will never reduce to End.

76 Chapter 5 Type checking and assertion insertion

Theorem 5.5. Let RSC be defined as

{〈Σ, S〉, 〈Σ, S〉 | 〈Σ0, ε〉
∗→〈Σ, S〉 ∧ 〈Σ, S〉 ∈ StateComp} (5.2)

RSC is an error-preserving simulation.

Proof. Wherever 〈Σ, S〉RSC〈Σ, S〉 holds, 〈Σ, S〉 ∈ StateComp, i.e. for all variables u then

τr <: τf such that
Σ(u) : τr

〈s, T∅〉 `f u : τf
(5.3)

where s = bSc.

From the definition of error-preserving simulation in Definition 5.4, we need to prove that all of

the following hold:

〈Σ, S〉 6→ TypeError (5.4)

if 〈Σ, S〉 → End then 〈Σ, S〉 99K End (5.5)

if 〈Σ, S〉 → Exception then 〈Σ, S〉 99K Exception (5.6)

We also need to prove that the following hold:

if 〈Σ, S〉 → 〈Σ′, S′〉 then 〈Σ, S〉 99K 〈Σ′, S′〉 ∧ 〈Σ′, S′〉RSC〈Σ′, S′〉 (5.7)

or 〈Σ, S〉 99K Exception ∧ 〈Σ, S〉 ∈ ⇑ (5.8)

By definition of the checked semantics, if 〈Σ, S〉 → End then 〈Σ, S〉 99K End. Therefore we

have shown that (5.5) holds as required. The same is true for Exception, i.e., (5.6).

We now proceed to prove that a type error cannot be raised, i.e., (5.4). We prove this, i.e., we

assume 〈Σ, S〉 → TypeError holds and find a contradiction. We analyse all cases of the µPython

semantics where 〈Σ, S〉 → TypeError.

Case fJIF, i.e., u is tos , s has the form 〈P, pc〉 :: ... and Ppc is JIF n. and ¬(Σ(tos) : Bool)

From (5.3), we infer for this case that τf is Bool. Since 〈Σ, S〉 ∈ StateComp, we know that

τr <: τf . As there is no valid runtime type that is a subtype of Bool other than Bool, this implies

that:

τ ′r = Bool

and hence, from (5.3):

Σ(tos) : Bool

This contradicts the assumption of the current case.

Chapter 5 Type checking and assertion insertion 77

All other cases where 〈Σ, S〉 → TypeError, i.e., fJIF, fSTR and fINT, follow this pattern and

lead to a contradiction. In fCF1, τf <: Fn so a contradiction may arise earlier. We therefore

conclude that 〈Σ, S〉 6→ TypeError as required.

We now consider cases where 〈Σ, S〉 → 〈Σ′, S′〉.

Since we know that 〈Σ0, ε〉
∗→〈Σ, S〉, we can conclude that 〈Σ0, ε〉

∗→〈Σ′, S′〉. We also need to

show that either (5.7) or (5.8) holds. We proceed by case analysis on 99K for the cases where

〈Σ, S〉 → 〈Σ′, S′〉.

Case 〈s, s′,Σ′〉 6∈ EdgeComp

From the definition of our checked µPython semantics in Definition 5.3 for this case, we can

conclude that

〈Σ, S〉 99K Exception (5.9)

By analysing the definition of EdgeComp, i.e. Definition 5.1, the current case implies that there

is a u such that τ ′r 6<: τpu· τ ′f , where

〈s, T∅〉 `p u : τp

〈s′, T∅〉 `f u : τ ′f

Σ′(u) : τ ′r

Now since we know from Theorem 4.2 that τ ′r <: τp, we can say that there is a u such that

τ ′r 6<: τ ′f . This means that 〈Σ′, S′〉 6∈ StateComp (see Definition 4.6).

Hence we know from Theorem 4.7 that 〈Σ′, S′〉 ∈ ⇑. From the definition of diverge-error

relation, this means that 〈Σ, S〉 ∈ ⇑ also holds. Therefore combining this result with (5.9), we

have shown that (5.8) holds as required.

Case 〈s, s′〉 ∈ FailEdge

From the checked µPython semantics 〈Σ, S〉 99K Exception. Using coinduction, this means

that we need to show that 〈Σ, S〉 ∈ ⇑. To do this we must show that FailEdge projects to a

diverge-error relation.

That is, let R be {〈Σ, S〉 | 〈Σ, S〉 → 〈Σ′, S′〉 ∧ 〈s, s′〉 ∈ FailEdge} and we show that R is a

diverge-error relation.

Suppose 〈Σ, S〉 ∈ R, then 〈s, s′〉 ∈ FailEdge , so either 〈s, s′,Σ′〉 6∈ EdgeComp and hence

〈Σ, S〉 ∈ ⇑, or 〈s′, s′′〉 ∈ FailEdge for all s′′ ∈ next(s′), as required.

Case 〈s, s′,Σ′〉 ∈ EdgeComp

From Definition 5.3 of our checked µPython semantics, we can conclude that

〈Σ, S〉 99K 〈Σ′, S′〉 (5.10)

78 Chapter 5 Type checking and assertion insertion

In order to prove that (5.7) holds, we need to show that:

〈Σ′, S′〉RSC〈Σ′, S′〉

holds, that is,

〈Σ0, ε〉
∗→〈Σ′, S′〉 ∧ 〈Σ′, S′〉 ∈ StateComp

〈Σ0, ε〉
∗→〈Σ′, S′〉 is clear. We therefore need to show that 〈Σ′, S′〉 ∈ StateComp, i.e., that for

any u, where
Σ′(u) : τ ′r

〈s′, T∅〉 `f u : τ ′f

we have

τ ′r <: τ ′f (5.11)

In order to prove (5.11), we start by looking at the definition of EdgeComp. This states that

τf = τ ′f or τp <: τ ′f or τ ′r <: τpu· τ ′f

where
〈s, T∅〉 `f u : τf

〈s′, T∅〉 `f u : τ ′f

〈s, T∅〉 `p u : τp

Σ′(u) : τ ′r

(5.12)

With Theorem 4.2 guaranteeing τ ′r <: τp, this implies τf = τ ′f or τ ′r <: τ ′f .

If τ ′r <: τ ′f , then we are done. On the other hand, if τf = τ ′f it is sufficient to show that

τ ′r <: τf (5.13)

If Σ(u) = Σ′(u) then τr = τ ′r where τr is given by Σ(u) : τr. Because 〈Σ, S〉 ∈ StateComp,

we know that τr <: τf and therefore τ ′r <: τ ′f as required.

We now assume that Σ(u) 6= Σ′(u), and keep in mind that 〈Σ, S〉 6→ TypeError. The instruc-

tions for which this is the case are typed using fSET/SG1.

The proof for all these cases follows a similar pattern. We give an example for fSET, where we

need to show that

τ ′r <: τf

holds. In this case τf is such that 〈s, T∅〉 `f tos : τf and by fSET, τf = > and therefore

τ ′r <: >

This is trivially true as the top type is at the top of the lattice.

Chapter 5 Type checking and assertion insertion 79

We have therefore demonstrated that (5.11) holds as required.

Since RSC is an error-preserving simulation and . is the largest error-preserving simulation,

then RSC ⊆..

The next corollary is an important result we get from our proofs. This signifies that any program

that is run using the checked semantics can never get stuck, but reduces to End or Exception.

Corollary 5.6. Consider a maximal trace 〈Σ0, ε〉
∗

99KN 699K. ThenN is either End or Exception.

Proof. We note immediately that 〈Σ0, ε〉 ∈ StateComp holds by virtue of rule fINIT of Figure

4.5. Therefore we have 〈Σ0, ε〉RSC 〈Σ0, ε〉 and hence by the above corollary we have 〈Σ0, ε〉 .
〈Σ0, ε〉. Now, suppose for contradiction that N is neither End or Exception. Then we must have

N being some 〈Σ, S〉 such that 〈Σ, S〉 . 〈Σ, S〉. This tells us that 〈Σ, S〉 6→ TypeError and,

by the definition of → we must have 〈Σ, S〉 → 〈Σ′, S′〉 for some 〈Σ′, S′〉. This means that

N 99K N ′ for some N ′ also, contradicting maximality.

5.3 Optimality

Now that we have shown the correctness of our type inference, we also investigate to what extent

our type checking mechanism detects type errors in advance. We define optimality as the ability

to detect type errors at the earliest point. Unfortunately our system does not quite enjoy this

property. For example consider the following program

if *:

x=’a’

y=’a’

else:

x=5

y=5

if *:

intOp(x)

strOp(y)

else:

strOp(x)

intOp(y)

In this case we know that this program is destined to yield a type error from the very outset.

However, if we consider each variable individually, this is not apparent; for each variable there is

a possible error-free control flow through the program, and only by considering the dependencies

between these, does the error become apparent. Since our analysis works on a per-variable basis,

it only identifies the error after the resolution of the second conditional. Limitations of these kind

are not unique to preemptive type checking, and all forms of data flow analysis suffer from this

same problem.

80 Chapter 5 Type checking and assertion insertion

We prove that our inference system satisfies a milder form of optimality in general. We have

optimality along execution sequences in which there are no branches of control flow. What this

means is that if there is a branch that leads to a TypeError in the unchecked semantics, then

this branch is never executed because the execution would be preempted by an Exception before

traversing into the branch.

Definition 5.7. A reduction step 〈Σ, S〉 → 〈Σ′, S′〉 is said to happen along a linear path if

next(s) = {s′}. A reduction sequence 〈Σ, S〉 ∗→〈Σ′, S′〉 is said to happen along a linear path if

each step in the sequence happens along a linear path.

Theorem 5.8 (Linear optimality). Consider a state 〈Σ0, ε〉 that is executed a number of times

using our checked semantics until it reaches a state 〈Σ, S〉.

〈Σ0, ε〉
∗

99K〈Σ, S〉

Suppose that if this state is executed by the unchecked semantics along a linear execution path,

this execution path ends in a TypeError, i.e.

〈Σ, S〉 ∗→TypeError

Then, 〈Σ, S〉 99K Exception

Proof. We prove this by contradiction, assuming that our checked semantics does not find type

errors in a linearly optimal manner. We assume that 〈Σ, S〉 99K 〈Σ′, S′〉, but 〈Σ′, S′〉 99K

Exception.

We first consider two cases: 〈s′, s′′〉 ∈ FailEdge or 〈s′, s′′〉 6∈ FailEdge . We consider the first

case, i.e., 〈s′, s′′〉 ∈ FailEdge . Since s, s′ and s′′ form part of a linear trail, from the definition

of FailEdge , we can conclude that 〈s, s′〉 ∈ FailEdge . By the checked semantics, in this case

〈Σ, S〉 99K Exception so we have found a contradiction in our hypothesis. From this point

onward we therefore assume that 〈s′, s′′〉 6∈ FailEdge .

Since 〈Σ, S〉 99K 〈Σ′, S′〉 and 〈Σ′, S′〉 99K Exception, from the definition of the checked

µPython semantics in Definition 5.3, together with our previous assumption, we know:

〈s′, s′′〉 6∈ FailEdge (5.14)

〈s′, s′′,Σ′′〉 6∈ EdgeComp (5.15)

where 〈Σ′, S′〉 → 〈Σ′′, S′′〉.

From the definition EdgeComp, (5.15) implies that we can pick a u such that:

τ ′f 6= τ ′′f ∧ τ ′p 6<: τ ′′f ∧ τ ′′r 6<: (τ ′pu· τ ′′f) (5.16)

Chapter 5 Type checking and assertion insertion 81

where τ ′r, τ ′f , τ ′p, τ ′′r , and τ ′′f are defined such that:

Σ′(u) : τ ′r

〈s′, T∅〉 `f u : τ ′f

〈s′, T∅〉 `p u : τ ′p

Σ′′(u) : τ ′′r

〈s′′, T∅〉 `f u : τ ′′f

(5.17)

Theorem 4.2 tells us that τ ′′r <: τ ′p, so

τ ′′r 6<: τ ′′f (5.18)

must in fact hold.

While from the definition of FailEdge , (5.14) implies:

∃Σ∗ · 〈s′, s′′,Σ∗〉 ∈ EdgeComp

Since τ ′r is the type of an actual value at runtime and there are no values of type ⊥, implies that

τ ′f = τ ′′f ∨ τ ′p <: τ ′′f ∨ (τ ′pu· τ ′′f) 6= ⊥

Taken with (5.16), this implies

(τ ′pu· τ ′′f) 6= ⊥

Collecting the above we have

τ ′p 6<: τ ′′f ∧ (τ ′pu· τ ′′f) 6= ⊥ (5.19)

We now consider all cases for the last inference rule used in the derivation of 〈s′, T∅〉 `f u : τ ′f
(see Figure 4.5 and Figure 4.6).

We note that fEND and fRAISE are not applicable since τ ′f is the type of u at s′, and there is an

execution s′′ that occurs after s′. Likewise, fINIT is not applicable. fTRAIL is also not applicable

since T∅ is empty.

We now consider rules fSET/JIF/STR/INT, except the special case where P ′pc′ = LG x. Under

these cases, we can see that rules pLC/INST/USE also match for τ ′p. In this case, τ ′p is the

type of a constant such as Bool, Int, etc. If we analyse the type lattice, we note that there are

no types between the level of Bool, Int, etc. and ⊥. Therefore there is no type τ ′′f such that

τ ′p 6<: τ ′′f ∧ (τ ′pu· τ ′′f) 6= ⊥, which contradicts (5.19) and so none of these rules could have been

used to derive 〈s′, T∅〉 `f u : τ ′f .

All the remaining cases are similar to the special case where P ′pc′ = LG x for fSET.

Case fSET and P ′pc′ = LG x, i.e., u is tos and s′ has the form 〈P ′, pc′〉 :: ...

82 Chapter 5 Type checking and assertion insertion

Before considering this case in detail, let us first consider the last inference rule applied in order

to get the type τ ′f
x of x (not tos), derived by the judgement 〈s′, T∅〉 `f x : τ ′f

x.

Since P ′pc = LG x, this rule is fLG1. By this rule and the fact that {s′′} = next(s′),

τ ′f
x

= υ′u· ν ′

where υ′ is defined such that

〈s′′, {〈s′, x〉}〉 `f tos : υ′

Hence τ ′f
x <: υ′.

In this case (i.e., fSET), u is tos and therefore τ ′′f is defined such that 〈s′′, T∅〉 `f tos : τ ′′f . By

Lemma 4.9 we can conclude that υ′ <: τ ′′f . Therefore, by transitivity we conclude that

τ ′f
x
<: τ ′′f (5.20)

We now consider τ ′r
x (the runtime type of x), which is defined such that Σ′(x) : τ ′r

x and we

consider the judgement for the runtime type τ ′′r of tos where Σ′′(tos) : τ ′′r .

By the µPython semantics, we conclude that τ ′r
x = τ ′′r . Therefore, since we know from (5.18)

that τ ′′r 6<: τ ′′f , we can also conclude that τ ′r
x 6<: τ ′′f . Also since we know from (5.20) that

τ ′f
x <: τ ′′f , we can now conclude that

τ ′r
x 6<: τ ′f

x (5.21)

From Theorem 5.5 we know that a state that has been executed several times using the checked

semantics maintains an error-preserving simulation. This means that since 〈Σ0, ε〉
∗

99K〈Σ′, S′〉,
then 〈Σ′, S′〉 ∈ StateComp, i.e.

τ ′r
x
<: τ ′f

x

We have therefore found a contradiction with (5.21), as required.

We have therefore proven that preemptive type checking is at least linearly optimal in terms of

type error preemption. Our optimality condition guarantees that type errors are preempted at

worst at the beginning of the branch where the type error would be raised. In practice, type

information and assertions are propagated through control flow splits and joins to earlier points.

Hence, linear optimality is not as restrictive as it first appears.

5.4 Type check insertions

In this section we describe an algorithm that transforms bytecode programs by inserting type

checks and explicit errors in such a way that the transformed program implements the checked

Chapter 5 Type checking and assertion insertion 83

P ′ ←− ε
for pc ←− 0.. size(P)− 1:
s←− b〈P, pc〉 :: scN
for s′ ∈ next(s):

if Ppc = JIF pc′ ∧ s′ = 〈P, pc′〉 :: ... ∧ 〈s, s′〉 ∈ FailEdge:
extend(P ′, failIfFalse)

if Ppc = JIF pc′ ∧ s′ = 〈P, pc + 1〉 :: ... ∧ 〈s, s′〉 ∈ FailEdge:
extend(P ′, failIfTrue)

if 〈ε, s〉 ∈ FailEdge:
extend(P ′, raise)

if Ppc 6∈ {JIF pc′,CF f, JP pc′}:
extend(P ′, Ppc)

for x ∈ V:
let τp be such that 〈s, T∅〉 `p x : τp
let τf be such that 〈s, T∅〉 `f x : τf
let τ ′f be such that 〈s′, T∅〉 `f x : τ ′f
if ¬(τf = τ ′f ∨ τp <: τ ′f):

if Ppc = JIF pc′ ∧ s′ = 〈P, pc′〉 :: ...:
extend(P ′, checkIfFalse(x, τpu· τ ′f))

if Ppc = JIF pc′ ∧ s′ = 〈P, pc + 1〉 :: ...:
extend(P ′, checkIfTrue(x, τpu· τ ′f))

if Ppc 6= JIF pc′:
extend(P ′, check(x, τpu· τ ′f))

if Ppc = CF f:
〈Q, 0〉 :: ...←− s′
extend(P ′, call(specialise(Q, s)))

if Ppc = JIF pc′ ∨ Ppc = JP pc′:
extend(P ′, Ppc)

Figure 5.2: Algorithm for inserting type checks in µPython programs, expressed as a
function specialise(P, s) that returns an updated program P ′.

semantics. An important point to note, however, is that the checked semantics is defined in

terms of edges of the truncated CFG, and that nodes in this graph do not correspond uniquely to

program locations. That is, each program location may occur many times as the currently exe-

cuting instruction in different nodes of the graph. For this reason, the bytecode transformation

takes as a parameter the particular truncated call stack against which we are inserting checks. If

the same program location is reached with a different call stack, then a specialised copy of the

program bytecode is created with the relevant assertions for that different call stack inserted. Of

course, call sites must be updated to call these specialised programs also.

The algorithm is given in Figure 5.2. It iterates over every instruction of the program, extending

the call stack with this instruction as the current one. It then considers edges in the truncated

CFG from this point in order to implement the FailEdge and StateComp predicates. The al-

gorithm makes use of several bytecode macros that are underlined in the algorithm and defined

in the Figure 5.3. These are expanded to a list of bytecode instructions. Procedure extend ,

84 Chapter 5 Type checking and assertion insertion

failIfFalse =
SG tmp
LG tmp
JIF l1
JP l2

l1 : raise
l2 : LG tmp

check (x, τ) =
SG tmp
LG x
isInstτ
JIF l1
JP l2

l1 : raise
l2 : LG tmp

failIfTrue =
SG tmp
LG tmp
JIF l1
raise

l1 : LG tmp

checkIfFalse (x, τ) =
SG tmp
LG tmp
JIF l1
JP l3

l1 : LG x
isInst τ
JIF l2
JP l3

l2 : raise
l3 : LG tmp

call (Q) =
SG tmp
LC Q
SG tmpf
LG tmp
CF tmpf

checkIfTrue (x, τ) =
SG tmp
LG tmp
JIF l2
LG x
isInst τ
JIF l1
JP l2

l1 : raise
l2 : LG tmp

Figure 5.3: Macros for type checking insertions, where tmp and tmpf are fresh vari-
ables.

which takes a program and a list of instructions, appends the instructions to the end of the given

program. When inserting any instructions into a program, the targets of any jump instructions

in this program are rearranged to reflect the inserted instructions.

5.5 A worked example

In this section, we go through the µPython example from Chapter 3 (see Figure 3.5), which can

raise a TypeError depending on the branch taken at line 4. This compiles to M and P f , defined

as

M = [
0

LC P f ;
1

SG f ;
2

LC ∗;
3

JIF 7;
4

LC ’42’;
5

SG x;
6

JP 9;
7

LC 42;
8

SG x;
9

CF f ;
10

RET]

P f = [LG x;
0

intOp;
1

RET
2

]

We show how preemptive type checking works at each stage and how the type error is preempted

at the earliest possible point. The type checking process starts with a control flow analysis; its

results are shown in Figure 5.4.

We then show how we conclude that the edge 〈〈M, 4〉, 〈M, 5〉〉 is in FailEdge . This means that

if the execution moves from 〈M, 4〉 to 〈M, 5〉, the program will eventually raise a TypeError or

Chapter 5 Type checking and assertion insertion 85

s 〈M, 0〉 〈M, 1〉 〈M, 2〉 〈M, 3〉 〈M, 4〉
line 0 0 2 2 3

instr. LC P f SG f LC * JIF 7 LC ’42’
prev. ε 〈M, 0〉 〈M, 1〉 〈M, 2〉 〈M, 3〉
next. 〈M, 1〉 〈M, 2〉 〈M, 3〉 {〈M, 4〉, 〈M, 7〉} 〈M, 5〉

s 〈M, 5〉 〈M, 6〉 〈M, 7〉 〈M, 8〉 〈M, 9〉
line 3 3 5 5 6

instr. SG x JP 9 LC 42 SG x CF f
prev. 〈M, 4〉 〈M, 5〉 〈M, 3〉 〈M, 7〉 {〈M, 8〉, 〈M, 6〉}
next. 〈M, 6〉 〈M, 9〉 〈M, 8〉 〈M, 9〉 〈P f , 0〉::〈M, 9〉

s 〈P f , 0〉::〈M, 9〉 〈P f , 1〉::〈M, 9〉 〈P f , 2〉::〈M, 9〉 〈M, 10〉
line 1 1 1 6

instr. LG x intOp RET RET
prev. 〈M, 9〉 〈P f , 0〉::〈M, 9〉 〈P f , 1〉::〈M, 9〉 〈P f , 2〉::〈M, 9〉
next. 〈P f , 1〉::〈M, 9〉 〈P f , 2〉::〈M, 9〉 〈M, 10〉

Figure 5.4: Control Flow for the µPython example

′42′ : Str

〈〈M, 4〉, T∅〉 `p tos : Str
pLC1 〈〈M, 4〉, T∅〉 `f tos : > fSET

〈〈M, 10〉, {〈〈P f , 2〉 :: 〈M, 9〉, x〉, 〈〈P f , 1〉 :: 〈M, 9〉, x〉, ...}〉 `f x : >
fEND

〈〈P f , 2〉 :: 〈M, 9〉, {〈〈P f , 1〉 :: 〈M, 9〉, x〉, 〈〈P f , 0〉 :: 〈M, 9〉, x〉, ...}〉 `f x : >
fRET

〈〈P f , 1〉 :: 〈M, 9〉, {〈〈P f , 0〉 :: 〈M, 9〉, x〉, 〈〈M, 9〉, x〉, ...}〉 `f tos : Int/x : >

〈〈P f , 0〉 :: 〈M, 9〉, {〈〈M, 9〉, x〉, 〈〈M, 6〉, x〉, ...}〉 `f x : Int

〈〈M, 9〉, {〈〈M, 6〉, x〉, 〈〈M, 5〉, tos〉, ...}〉 `f x : Int

〈〈M, 6〉, {〈〈M, 5〉, tos〉}〉 `f x : Int

〈〈M, 5〉, T∅〉 `f tos : Int
fSG2

fRET/JP

fCF2

fLG1

fintOp1/2

Figure 5.5: Derivations of present and future use types at 〈M, 4〉 and 〈M, 5〉. In each
rule the side-conditions are not shown. The rules are applied to the location at the top
of the call stack.

diverge. From the definition of FailEdge , we need to show that

∀Σ′ · 〈〈M, 4〉, 〈M, 5〉,Σ′〉 6∈ EdgeComp (5.22)

We have derivations of the following in Figure 5.5,

〈〈M, 4〉, T∅〉 `f tos : > 〈〈M, 4〉, T∅〉 `p tos : Str 〈〈M, 5〉, T∅〉 `f tos : Int

Since Int 6= >, Int 6<: Str, and the fact that there can be no τr such that τr <: ⊥, we know that

(5.22) holds. Similarly, we also conclude that 〈〈M, 3〉, 〈M, 4〉〉 ∈ FailEdge .

The edge in (5.22) represents the transition from line 4 to line 5 in the source code. The checked

semantics would therefore raise an Exception at that point. Now we insert type checks in

86 Chapter 5 Type checking and assertion insertion

def f():
return intOp(x)

if ∗ :
raise
x =’42’

else :
x = 42

f()

Figure 5.6: The transformed µPython example with preemptive type checking.

M . Since this is the program at the outermost scope, the specialisation argument is ε and

specialise(M, ε) is called. According to the definition of FailEdge , specialise should insert a

failure assertion at each edge 〈〈M, 3〉, 〈M, 4〉〉 and 〈〈M, 4〉, 〈M, 5〉〉. However, in our imple-

mentation we optimise by only inserting raise at the first point in the sequence of failing edges.

Therefore the transformed bytecode for M is:

M ′ = [LC P f ; SG f ; LC ∗; failIfTrue; JIF 7 + n; LC ’42’; SG x; JP 9 + n; LC 42;SG x;CF f]

where the inserted code is underlined and n is the length of the instructions in failIfTrue. This

is equivalent to the high-level program shown in Figure 5.6. The check is therefore inserted at

the earliest point at which we can guarantee that the execution will end in a TypeError.

It is interesting to compare this example, say, with the approach used in gradual typing with

unification based inference [98]. Since variable x is assigned both a Str and an Int in different

locations, and is used as an Int, x would be inferred to have type Dyn and a type error could

only be raised at the application of intOp. This is typical for other type systems which allow this

program to be statically type checked [22, 5, 117]. Other static analysis approaches for dynamic

languages would reject this program outright [10, 18, 6].

5.6 Conclusion

In this chapter we have formalised the type checking mechanism behind preemptive type check-

ing. We have defined this in terms of a checked semantics for µPython that implements the type

checking mechanism using inferred type information from the type inference defined in Chapter

4.

We have proven correctness and optimality properties for the checked semantics and presented

an algorithm for inserting explicit type checks into a µPython program. Such a program behaves

like a program running under a checked semantics when interpreted under an unchecked seman-

tics. We have also illustrated the algorithms presented in this chapter on an example µPython

program.

Chapter 6

From µPython to full Python

In this chapter we describe how we make use of the algorithms developed in Chapters 4 and 5 to

build a tool that implements preemptive type checking. Our tool supports a larger subset of the

Python language than µPython. We then evaluate this tool with some synthetic examples and

some benchmarks from the computer languages benchmarks game [4].

6.1 Introduction

We implemented the preemptive type checking tool as a Python 3.3 library that can be loaded

with the target program. It can be invoked at runtime, typically during the initialisation of a

program, to transform an existing function in such a way as to implement the semantics of

preemptive type checking. This design decision makes our library easy to use, as we will see in

Section 6.2. Despite the fact that the analysis is actually performed at runtime, the techniques

used are static analysis techniques and the analysis is meant to be invoked once.

We have based our implementation on Python 3.3 and we support a number of features, includ-

ing:

• local and global variables (Section 6.5),

• the evaluation stack (Section 6.6),

• control structures such as while-loops,

• polyadic functions, anonymous functions,

• tuples, and operators without overloading, and

• some standard library functions, which we annotate with type information.

87

88 Chapter 6 From µPython to full Python

We also allow a user to explicitly add type annotations to any functions using function annota-

tions [115].

We use the implementation described in this chapter to demonstrate the usefulness of preemptive

type checking. We show this on both synthetic examples and selected benchmarks from the

computer language benchmarks game [4]. This benchmark suite compares measurements of

programs written in different programming languages.

6.2 Architecture of the tool

We choose to implement our tool for Python in Python mainly to improve usability. In order to

use our tool we simply load the library in the source file under analysis and invoke the trans-

former at runtime on the entry point function, such as a user defined function main or any

other function. At this point, the analysis performed will be a static analysis. The tool takes

full advantage of Python’s reflection and limited metaprogramming capabilities. This design

decision also makes it possible to allow features not supported by our tool to be used during the

initialisation of a program. These include code loading and creation of functions.

High level overview

Our type checking process is integrated with the runtime environment. Unlike most analysers,

our type checker does not require the program’s source code. Instead, our type analysis works

directly on a live program and environment, introspecting and analysing the environment for the

currently executing program. Our type checking mechanism is called on a particular function,

for example main. This function is created and initialised by the standard interpreter. We refer

to this phase as the initialisation phase (see Figure 6.2), and in this phase the full power of the

Python language can be used. The semantics of the language during this phase are not affected

and therefore the program might raise a type error. We show this in an example in Figure

6.1, where the program is executed using the standard semantics up to line 10. Then, the type

checking library is invoked on a particular function, for example main, as in line 10. Then, a

version of main with inserted type checks is introduced in the environment at line 13. This is

subsequently called at line 15.

The analysis phase, which partly implements preemptive type checking, splits the problem into

different stages. As outlined in Figure 6.2 and Figure 6.3, the analysis starts with a control flow

analysis. This is followed by a type analysis, where the present and future use types of any

variable at any point are calculated. Given this information, the position and kind of type checks

that need to be inserted can be established.

It is then possible to emit the bytecode with the type checks inserted. Using the information

gained by the analysis, we simply copy the bytecode in the original function that is being type

Chapter 6 From µPython to full Python 89

1 from typer import Analyser
2
3 def main():
4 # Python, with some restricted features
5 .
6
7 if __name__==’__main__’:
8 # Full Python language up to here.
9 # We first analyse the function initialised above.

10 a=Analyser(main)
11 # We transform the function such that it
12 # implements preemptive type checking semantics.
13 a.emit()
14 # We call the transformed function.
15 _main()

Figure 6.1: Phases of the type checking process, outlined in the user code.

checked or any function called from within and interleave the type checks. Emitting bytecode

with these type checks inserted is an optional step; the user can simply get a printout of the

warnings that pinpoint potential type errors in the original code without actually running the

program.

When the function that goes through this process is executed, the simple type checks inserted in

the function make sure that any type error is preempted as early as possible with an informative

error message.

6.3 Using the type checker on existing programs

In this section we show how to make use of our type checker. The entry point to the analysis

is the class Analyser which takes a callable object such as the main function, and an

integer truncation level. The Analyser first constructs the truncated CFG and then iterates

over all nodes in order to calculate the present and future use types for the accumulator. All

type calculations are thus cached during the iteration across the CFG so that present and future

use types for all necessary variables in all states are established. The type checks that need

to be inserted in the code are also calculated. Warnings can be printed to the screen via the

printWarnings method available in the Analyser class. This prints out a description of

the type checks that need to be inserted in the bytecode.

After this, an implementation of specialise as in Figure 5.2 is used to transform the program into

a type preempted version of the bytecode. This resides in the method emit in the Analyser

class. This method also takes the current globals() dictionary, and updates the necessary

functions in this dictionary to work with preemptive type checking. The Analyser class can

also issue messages explaining the potential type failures in the given function. This includes

the line numbers of the fault locations. We do this by passing error messages with exceptions

that record the file names and line numbers of program locations that have caused a preemptive

type error, along with the expected and actual types.

90 Chapter 6 From µPython to full Python

*.py

Live environment

x mainz

LC 1
SG x
JIF n

.

.

.

Bytecode emitter

Analysis

Control flow

Type analysis

Assertion
calculation

updated environment

x

main
1

z
main

2

LC 1
SG x
JIF n
** *
.

** *
LC 1
SG x
JIF n
.

Introspection2. Analysis
and program

transformation

1. Initialisation
(full language)

3. Checked
execution

y

y

execution

Program is run by
the standard
interpreter until a
call is made to our
analysis.

A function is passed
to the analyser. The
code is analysed
and type checks are
inserted.

The modified
function is called
and run by the
standard interpreter.

Figure 6.2: Outline of type checking process.

Chapter 6 From µPython to full Python 91

Determine the present and future use
types of any variable at any point in a
program

Find locations where assertions need
to be inserted, and the constraints
these should enforce.

Mechanically emit bytecode that
corresponds to the original code plus
the type checks that need to be inserted.

Type analysis

Assertion calculation

Emit bytecode

Construct all the possible execution
points for a given entry function and
an interprocedural control flow graph.

Control-flow analysis

Analyser

Figure 6.3: Conceptual structure.

92 Chapter 6 From µPython to full Python

To use the implementation, the static analysis of a function (for example called main) is invoked

by:

a=Analyser(main,2)

a.emit(globals())

This transforms the function main, and all other functions it calls, into specialised versions that

implement preemptive type checking. Then, calling the specialised version of main activates

the preemption to catch any runtime type errors. If it can be statically determined that a type

error is unavoidable, main will raise an immediate exception on calling.

We only support a limited subset of Python, which makes it difficult to use our library with real

world code. We mitigate this problem by supporting optional type annotations that are used

to indicate the type of a function to our type inference. This feature makes use of function

annotations [115], a recent feature of the Python language. These can be easily applied to

existing code:

def foo(x:Number,l:MutableSequence) -> NoneType:

...

unsupported feature used here

...

...

Whenever our analyser encounters a function that is type annotated, it does not analyse its body

and therefore we can use any feature supported by Python in the body of such a function.

Instruction objects

Our implementation builds an object structure that follows the structure of the program. We have

therefore designed a class structure to represent the various Python instructions. Each individual

instruction class maps to a Python bytecode instruction. The responsibilities of each instruction

object include:

• Calculating the next execution point given the current execution point.

• Implementing the typing rules associated with an instruction.

• Calculating the stack displacement associated with an instruction.

In terms of storage requirements, instruction objects are quite small. These mainly store the

operand of the instruction and a reference to the current execution point. They are however

responsible for approximately half of the implementation of the whole tool. The rest of the

logic is encapsulated in the Analyser class, which links together the instruction objects. This

has a special factory method that, given a program execution point, constructs a corresponding

instruction object and keeps these in a pool. By extension, since execution points are linked in

Chapter 6 From µPython to full Python 93

def f(y):
 y=36
 useint(y)

LOAD_CONST 36
STORE_FAST y
LOAD_GLOBAL useint
LOAD_FAST y
CALL_FUNCTION 1
..

F
A
C
T
O
R
Y

FirstInst

<F,1> 36

STORE_FAST<F,2> y

CALL_FUNCTION<F,5> 1

.

.

.

Python
compiler

next/prev

ε

LOAD_CONST acc:Int acc:

Other:

acc: Fn

y:

acc:Un

Other:

y:

acc:⊤

Other:

Other: lookup
globals..

Get p type Get f type

.

.

.

.

.

.

Other:
next/prev

Instruction objects

Analyser

Figure 6.4: Instantiation and interaction of instruction objects.

a graph, instruction objects are also. We can see the interaction between instruction objects in

Figure 6.4. In this diagram we can see how the individual instruction objects correspond to the

actual instructions in the program. We can also see the interaction between the different instruc-

tion objects. For example, each execution point that an instruction object holds is associated to

other execution points through the prev and next operations. In the example in Figure 6.4, we

see that to get the present type of y at execution point 〈F, 2〉, one needs to get the present type

of tos at 〈F, 1〉.

Instruction objects follow a hierarchical subclass structure and therefore all instruction objects

have a common interface. Each Python instruction that we support has its corresponding Python

class. There are also two special kinds of instruction classes FirstInst and LastInst,

which follow a variant of the Null Object [61] design pattern.

Analyser class

The analyser class is mainly responsible for gluing together the logic provided by the instruction

objects, calculating type checks to insert and emitting specialised bytecode. As can be seen in

Figure 6.4, instruction objects are instantiated and contained in instances of the Analyser

class. As opposed to any instruction class, the Analyser class is a heavyweight class. It

contains all internal caches and the calculated type checks.

94 Chapter 6 From µPython to full Python

6.4 Control flow analysis

As we have seen in Chapter 4, the type inference mechanism and its correctness are independent

of the choice of the control flow analysis algorithm. Our type inference mechanism requires an

implementation for next and prev over execution points, and hence a control flow graph, where

nodes in these graph are actually execution points. As long as the control flow analysis returns

an overapproximation of the actual control flow that happens at runtime, the soundness of the

inference algorithm would hold. The more precise the control flow analysis algorithm is, the

more precise the inferred present and future use types can be. Moreover, the more precise the

inferred types are, the less type checks need to be inserted into the resulting code.

Clearly, as our system is built upon a static control flow analysis, we need an implementation for

this. As in the theory, our implementation is also parametric to the implementation of the control

flow analysis. There are several algorithms that could be used, including the well known k-CFA

[93, 94]. Unfortunately, for languages such as Python there are no off-the-shelf implementations

available that can perform control flow analysis. There is, however, a toolkit [14] that performs

control flow analysis on languages with less dynamic features than Python, such as C. This

toolkit took 50 person-years of effort over eight elapsed years to build [14]. The engineering

effort required to implement a full-fledged control flow analyser for the full Python language is

therefore beyond our capabilities. We have instead implemented a simple version.

For the control flow analysis to take place, we have to first extract and parse the bytecode from

the function that we are analysing. For this purpose, we use BytePlay, a Python bytecode parser,

which we ported to support Python 3.3. This involved converting the functionality from Python

2 to Python 3, but it also involved supporting the new bytecodes and the new bytecode structure.

We use this library to parse, analyse, and repackage the bytecode. As a proof of concept, we use

a simplified version of next and prev in which we assume that all function definitions are either

made in the preamble to the main program or are single use anonymous functions.

There are various frameworks that make use of intermediate program representations in static

single assignment form [63, 87]. In order to support such a representation we would need to

introduce appropriate rules in Figures 4.3–4.6 for φ instructions. We believe that analysing

programs in SSA form would not facilitate the implementation of our algorithms. As we shall

see in the next section, Python makes a distinction between local and global variables, and we

handle both in our implementation. The control flow graphs that are followed when determining

the types of these variables are different. For example, in order to determine the type of a local

variable, one does not need to follow an interprocedural control flow graph. To keep the design

simple and the implementation fast, we construct two different control flow graphs: a global

inter-procedural control flow graph and disjointed intra-procedural control flow graphs for the

main function and all other functions called within. We shall explain how the global control

flow graph is constructed, as this involves more work.

Chapter 6 From µPython to full Python 95

oldpoints←− ∅
oldedges=←− ∅
points←− {ε, 〈M, 0〉 :: ε}
edges←− {〈ε, 〈M, 0〉 :: ε〉}
def addedge(s, s′):

points←− points ∪ {s′}
edges←− {〈s, s′〉}

def inc(s):
〈P, pc〉 :: s∗ ←− s
return 〈P, pc + 1〉 :: s∗

while oldedges6=edges:
oldpoints←−points
oldedges←−edges
for s←− points:

〈P, pc〉 :: s∗ ←− s
if Ppc is a call function:

P ′ ←− code of target function
addedge(s, b〈P ′, 0〉 :: scN)

elif Ppc is a return from function:
for 〈s′, s′′〉 ←−edges:

if s′′ = 〈P, 0〉 :: s∗:
addedge(s,inc(s′))

elif Ppc is a jump:
pc′ ←− target of instruction
addedge(s, 〈P, pc′〉 :: s∗)
if Ppc is a conditional jump:

addedge(s,inc(s))
else:

addedge(s,inc(s))

Figure 6.5: Algorithm for constructing the intra-procedural control flow graph

Our algorithm for constructing the control flow graph is defined in Figure 6.5. We represent a

control flow graph as a set of edges, where every edge is a pair of execution points. We also keep

a set of all execution points, and maintain indices for fast lookup of next and previous points

given a particular point. Our algorithm for constructing the control flow graph initially starts

with two execution points: these correspond to ε and 〈M, 0〉 :: ε and a single edge between

them. This incrementally constructs a control flow graph until a fixpoint is reached on the set of

edges. Hence, for every point s we get the next point s′ and add s′ to our global set of points.

We also add 〈s, s′〉 to the global set of edges. Here is how we determine the next point given a

point s. The following steps are repeated for all execution points:

1. If the instruction at s is not a jump, a call function or a return instruction, the next point is

the same as s, except that the program counter is incremented by one.

2. If the instruction at s is an unconditional jump, the next point is constructed by looking at

the target of the jump. In the case of a conditional jump, we also follow step 1.

3. If the instruction at s is a call function instruction, we statically determine the code of the

function that is being called. In our simple implementation, we assume that functions are

only defined once and always before being used. We append this function together with

a program counter value of one to s. We truncate this new point to the execution point

depth N .

96 Chapter 6 From µPython to full Python

4. If the instruction at s is a return instruction, we look at all the edges and find an edge which

leads to the entry point s′′ of the current function. s′′ matches s in everything except the

program counter. In this case s′ is the next point in program order of s′′.

Throughout this stage we also maintain the lookup indices.

6.5 Type analysis

In this section, we describe the process of determining present and future use types of any

variable at any point in a program. A main aspect of this process is the interaction between

instruction objects when determining the present and future use type at the point that these

are associated with. In Figure 6.4 for example, we show as arrows the interaction between

instruction objects when getting a particular type.

We represent instructions as classes, and instances of instructions in the program as objects.

Each instruction object contains methods (gtp or gtf) to get the present or future use type of

any variable at the location associated with the instruction. In turn, these methods call other

methods connected with these instructions via prev and next.

We tried two different approaches for the type analysis. In the first approach, we implemented

the type rules in a functional programming style and we kept a trail inside the Analyser class.

The result was a program that recursively called the respective functions that implemented the

type rules. We found that this approach is the fastest approach for finding the type of a single

variable at a single point, as the type information is gathered lazily and incrementally. This

approach would be suitable for an analyser in an IDE, where the programmer would want to

know the type of a single variable at a single point.

The second approach we tried, which is the one we base the results on, finds the types of all

variables at all points by starting with the assumption that all types are of type ⊥. Then, we

iterate through every point and every variable mentioned in the program that is being analysed

and calculate its type. This process is repeated until we reach a fixpoint on the types for all

variables for all points.

An important reason why a trail based approach should be considered in practice is the fact that

this kind of type inference is guaranteed to terminate (see Theorem 4.1). We have not proved

this for an implementation that tries to find a global fixpoint on the inferred types. Nonetheless,

since this approach scales better in cases where we want to find the types of all variables at all

execution points, the results and timings that we present are based on this implementation.

Chapter 6 From µPython to full Python 97

Local variables, global variables and evaluation stacks

In Python, local variables can only be redefined within the scope in which they are defined,

while global variables can be redefined globally. In the case of mutable objects, however, one

can redefine a field of an object defined in another scope or perhaps an entry in a list. Since we

do not support container types at this stage, function calls do not have any effect on locals.

We support both local and global variables with a class structure that represents names. These

include variable names and also positions in the evaluation stack. Therefore, there are three main

concrete classes. Local represents local variable names, Global represents global variable

names and StackOffset represents positions within the evaluation stack. In the case of a

stack we store the position of the stack as an integer. In the case of a variable name, we represent

the visibility of the variable (local or global) and also the actual variable name (such as x and y).

Since locals and globals are stored in different dictionaries, there are no name collision issues

between local and global variables.

In order to support local variables, we extend the type rules such that these also consider local

variables. In order to determine the type of a local variable, we do not need to traverse the global

control flow graph. Therefore we traverse an intra-procedural control flow graph when looking

up the type of a local variable. In the case of present types, if we reach the beginning of the

program contained in the current function, we then look at the arguments of the function. If the

local variable is passed as an argument, its type can be determined by looking at the type of the

value passed at the corresponding stack position when calling the function. Local variables that

are not defined inside a function or not passed as arguments have type Un.

6.6 Modelling a stack

The Python virtual machine is a stack based machine. The evaluation stack serves as working

memory and is read and manipulated by a large portion of the bytecode instructions. For exam-

ple, load operations push a single element on to the stack while store operations pop a single

element from it.

When an element is pushed or popped on to or from the stack, it displaces all other elements by

one position. For example, when executing a CALL_FUNCTION n instruction, n elements are

popped from the stack and the return value is pushed. The operand n corresponds to the number

of arguments applied to the function.

For the general case, we model the stack by calculating how much the stack has shifted for every

execution point. For example, consider the following table:

98 Chapter 6 From µPython to full Python

instruction stack shift prev next

s JUMP_ABSOLUTE no change ... s′

s′ CALL_FUNCTION 2 pops 2 s s′′

s′′ LOAD_CONST pushes 1 s′ ...

In the first column, we have the execution points s, s′ and s′′. The corresponding instructions

at these points are in the second column. The third column describes the current instruction’s

effect to the stack. If we try to infer the present type of the element stored at stack position 4

after executing the instruction at s′′, we need to take into consideration these effects. In this

case we need to infer the present type of stack position 3 at s′ and hence stack position 5 at s.

Conversely, the future use type of stack position 3 before executing the instruction at s is the

same as stack position 3 at s′ and stack position 1 at s′′. We observe that in the 100+ bytecode

instructions in Python 3.3, this shift can be calculated statically in bytecode generated by the

Python compiler.

The Python interpreter performs some preliminary checks on the bytecode before this bytecode

is run. One of these is to make sure that if the control flow is split, then the stack depth when the

control flow is rejoined is even. In case of a control flow split or join, the existing machinery for

joining types therefore automatically handles the different types that may be present at different

stack positions under the different branches.

The arguments to a function and the return value are also passed over the stack. For example,

the statement z=f(x,2) (where f is a global variable) is translated into the following bytecode

instructions. In this example, we also show what the contents of the stack are at each location.

0 LOAD_GLOBAL f Stack: f]

1 LOAD_FAST x Stack: x,f]

2 LOAD_CONST 2 Stack: 2,x,f]

3 CALL_FUNCTION Stack: result]

4 STORE_FAST z Stack:]

6.7 Type check insertion

Our implementation of the type checking mechanism is similar to the mechanism described

in Section 5.4. Since our implementation works on Python rather than µPython, we can use

more advanced Python features together with reflection, to implement the type check insertion

mechanism. As in Section 5.4, we may need to map multiple execution points to the same code

locations and we do so by specialising functions according to the execution point of their call

site.

The type check insertion mechanism does not physically insert checks in the bytecode but sim-

ply keeps track of the insertions that need to happen at particular execution points. The actual

insertion is performed by the bytecode specialisation algorithm, which is described later on.

Chapter 6 From µPython to full Python 99

for 〈s, s′〉 ←− all edges:
if 〈s, s′〉 ∈ FailEdge:

Insert code at s′ to fail if previous point is s
continue

for s←− prev(s′):
Insert code after s to store s as the previous point
for u←− V+:
τp ←− the p type of u at s
τf ←− the f type of u at s
τ ′f ←− the f type of u at s′

if τf 6= τ ′f and τp 6<: τ ′f:
Insert code at s′ to fail if previous point is s and

the runtime type τr of u is not a subtype of τpu· τ ′f
for s←− prev(s′):
Insert code after s to store s as the previous point

Figure 6.6: Type checking insertion mechanism, this takes in a set of failing edges
FailEdge and returns all the insertions to be made

The type check insertion algorithm, expressed in Figure 6.6, goes through all control flow edges

〈s, s′〉. If 〈s, s′〉 ∈ FailEdge then we insert code to raise a preemptive type error at execution

point s′. This checks that the previous execution point was s. In order to do this, we insert

instructions at all code locations corresponding to prev(s′) to store a representation of the exe-

cution point in a reserved global variable. This is a different approach to the algorithm described

in Section 5.4. Similarly, code is also inserted to perform the necessary type checks on any vari-

able, as required. This is inserted only in cases where there was a change in the future use type

between s and s′ and the present type is not a subtype of the future use type.

From our implementation, we found that the simplest and most efficient way to implement the

assertion insertion mechanism is to produce a specialised version of the same function according

to the different truncated runtime call stacks. In order to do this, we introduce the concept of

specialisation points. A specialisation point s∗ is a further truncation of an execution point

and therefore contains all the elements of an execution point except for the topmost element.

Specialisation points represent call sites, and when 〈P, pc〉 is appended to a specialisation point

s∗, an execution point is constructed that represents a point inside P , when called from s∗.

Therefore, in order to get a set of all the different specialisations for a particular program P , we

have the following set comprehension:

specialisation points for P = {s∗ | ∀s · 〈P, pc〉 :: s∗ = s}

The algorithm for specialising a particular program P for a specialisation point s∗ (i.e. variable

containing P called at execution point that ends with s∗) is shown in Figure 6.7. In order to make

use of the specialised versions in each function, we need to modify the call site of any function,

so that instead of calling the original function, we call the specialised function instead. A call

site in Python contains a CALL_FUNCTION instruction. There could potentially be a number of

different functions that are called from a single call site. In order to maintain the same semantics

100 Chapter 6 From µPython to full Python

P ′ ←− []
pc ←− 0
for pc ←− 0.. size(P)− 1:
s←− 〈P, pc〉 :: s∗

if there is code to insert at s:
P ′ ←− P ′ + code to insert

if Ppcis a function call:
P ′ ←− P ′ + compiled version of{
Load the target function code into Q
Call the specialised version of Q forbscN−1

}
P ′ ←− P ′ + Ppc

if there is code to insert after s:
P ′ ←− P ′ + code to insert

Figure 6.7: Algorithm for emitting the bytecode. This takes the specialisation point s∗

for P , and all insertions to be made and returns the specialised program P ′

in the modified function, we need to replace all CALL_FUNCTION instructions with code that

dispatches over the actual function being called. This is contained at a stack position that is

statically calculated. A pre-calculated specialised version of this function is called instead. This

is currently not fully implemented and tested, but since we assume that all functions are declared

in a preamble to the function under analysis, no dispatching has to take place. Therefore we can

statically determine which function is going to be called at every call site.

In our implementation, optimised versions of these algorithms are used. One of the optimisations

is that of determining which variables are relevant at every execution point, which is described

in the next section. We now demonstrate the type checking insertion on the example presented

in the introduction in Figure 1.2. In this case, the execution point depth is set to 2. Two different

specialised versions of compute are generated. This is because there are two possible distinct

execution points at the entry to the function compute for an execution point depth of 2. In this

case, these correspond to lines 10 and 18 in Figure 1.2.

A disassembly of the bytecode of the transformed version of main is shown in Figure 6.8. The

first column contains the line number in the original source code. The second column is the

offset in the bytecode string, in bytes. The third column is the instruction opcode and the forth

column is the operand. The fifth column is a comment describing the operand. In these bytecode

listings, we display the inserted or modified instructions in red and mark the corresponding line

with a #. From this we can notice that the original line numbers are preserved, even though new

bytecode instructions are inserted. Therefore this code still works in the debugger. In Figure 6.8

we can see that two instructions are inserted at the start. These store the first execution point,

represented as an empty tuple, in a global variable previous stack. Indeed, all execution

points are represented as tuples rather than as stacks, as there is built-in support for this data

structure. In this disassembly we can also see that at bytecode offset 79, main35 compute

is loaded and subsequently called. This is the specialised version of compute for the call site

Chapter 6 From µPython to full Python 101

#14 0 LOAD_CONST 1 (())
3 STORE_GLOBAL 0 (previous_stack)

6 LOAD_GLOBAL 1 (len)
9 LOAD_GLOBAL 2 (argv)
12 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
15 LOAD_CONST 2 (2)
18 COMPARE_OP 0 (<)
21 POP_JUMP_IF_FALSE 51

15 24 LOAD_GLOBAL 3 (abs)
27 LOAD_GLOBAL 4 (int)
30 LOAD_GLOBAL 5 (input)
33 LOAD_CONST 3 (’enter initial value: ’)
36 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
39 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
42 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
45 STORE_GLOBAL 6 (initial)
48 JUMP_FORWARD 22 (to 73)

17 >> 51 LOAD_GLOBAL 3 (abs)
54 LOAD_GLOBAL 4 (int)
57 LOAD_GLOBAL 2 (argv)
60 LOAD_CONST 4 (1)
63 BINARY_SUBSCR
64 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
67 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
70 STORE_GLOBAL 6 (initial)

18 >> 73 LOAD_GLOBAL 7 (print)
76 LOAD_CONST 5 (’outcome:’)

79 LOAD_GLOBAL 8 (main35_compute)
82 CALL_FUNCTION 0 (0 positional, 0 keyword pair)
85 CALL_FUNCTION 2 (2 positional, 0 keyword pair)
88 POP_TOP
89 LOAD_CONST 0 (None)
92 RETURN_VALUE

Figure 6.8: Bytecode for the specialised main function, i.e., main.

at line 18 in Figure 1.2 and its disassembly can be seen in Figure 6.9. We can see in this list-

ing that at bytecode offsets 13 and 16, we store the current execution point in a special global

variable called previous_stack. After the conditional jump, a call to function failfast

is inserted, which takes the current global dictionary. In this function, if previous_stack

is ((main, 35), (compute, 6)), an exception is raised, preempting further execution.

In this specialised version of compute, we know that x1, x2 and x3 are not numbers, so the

subsequent instructions in the branch would raise a type error. The original function compute

calls itself recursively. Instead, function main35 compute calls yet another specialised ver-

sion of compute, compute34 compute. Its can be seen in Figure 6.10. This corresponds

to the call site at line 10 in Figure 1.2. In this specialised version, our type analysis infers that

x1 and x2 can be either a number or of type NoneType. Therefore type checks need to be

inserted in this case. Therefore in the disassembly, from bytecode offsets 22 to 59, functions

named asserttype are loaded to check the types of x2 and x3. These functions are defined

within the analyser class, inside function emit. These actually form a closure around their

definition site and are specialised for the variables and types that they need to check. These

functions take the locals() and globals() dictionaries as parameter.

102 Chapter 6 From µPython to full Python

5 0 LOAD_GLOBAL 0 (initial)
3 LOAD_CONST 1 (5)
6 BINARY_MODULO
7 LOAD_CONST 2 (0)
10 COMPARE_OP 2 (==)

13 LOAD_CONST 3 (((main, 35), (compute, 6)))
16 STORE_GLOBAL 1 (previous_stack)

19 POP_JUMP_IF_FALSE 69

6 22 LOAD_CONST 4 (<function Analyser.emit ...
failfast at 0x7f78d400b830>)
25 LOAD_GLOBAL 2 (globals)
28 CALL_FUNCTION 0 (0 positional, 0 keyword pair)
31 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
34 POP_TOP

35 LOAD_GLOBAL 3 (int)
38 LOAD_GLOBAL 4 (input)
41 LOAD_CONST 5 (’enter final value: ’)
44 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
47 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
50 STORE_FAST 3 (fin)

7 53 LOAD_FAST 0 (x1)
56 LOAD_FAST 1 (x2)
59 BINARY_ADD
60 LOAD_FAST 2 (x3)
63 BINARY_ADD
64 LOAD_FAST 3 (fin)
67 BINARY_ADD
68 RETURN_VALUE

9 >> 69 LOAD_GLOBAL 0 (initial)
72 LOAD_CONST 6 (1)
75 INPLACE_SUBTRACT
76 STORE_GLOBAL 0 (initial)

#10 79 LOAD_GLOBAL 5 (compute34_compute)
82 LOAD_FAST 1 (x2)
85 LOAD_FAST 2 (x3)
88 LOAD_GLOBAL 0 (initial)
91 CALL_FUNCTION 3 (3 positional, 0 keyword pair)
94 RETURN_VALUE
95 LOAD_CONST 0 (None)
98 RETURN_VALUE

Figure 6.9: Bytecode for the specialised compute function, i.e., main35 compute.

6.8 Variables of interest at each point

In our abstract algorithm for inserting the type checks and for calculating FailEdge , we quantify

over all variables in V for any arbitrary point s. In order to implement this, we need to calculate

a subset of relevant variables. A naive way to do so is to record all variables that appear in a

program. This is inefficient because variables can be unused in certain parts of a program. We

note that any instruction that can raise a TypeError in Python would do so because there is an

element of the wrong type on the stack. At some point this element has to make its way onto the

top of the stack. We exploit this to calculate which variables are of interest at each point. One

feature of our analyser is that each time a present or future use type is calculated at a point s,

we cache the result to improve the performance. Now, if we go through every execution point s

and request the present and future use type of the top of the stack, these requests will translate

Chapter 6 From µPython to full Python 103

5 0 LOAD_GLOBAL 0 (initial)
3 LOAD_CONST 1 (5)
6 BINARY_MODULO
7 LOAD_CONST 2 (0)
10 COMPARE_OP 2 (==)

13 LOAD_CONST 3 (((compute, 34), (compute, 6)))
16 STORE_GLOBAL 1 (previous_stack)

19 POP_JUMP_IF_FALSE 94

6 22 LOAD_CONST 4 (<function Analyser.emit ...
asserttype at 0x7f78d400bcb0>)
25 LOAD_GLOBAL 2 (globals)
28 CALL_FUNCTION 0 (0 positional, 0 keyword pair)
31 LOAD_GLOBAL 3 (locals)
34 CALL_FUNCTION 0 (0 positional, 0 keyword pair)
37 CALL_FUNCTION 2 (2 positional, 0 keyword pair)
40 POP_TOP
41 LOAD_CONST 5 (<function Analyser.emit ...
asserttype at 0x7f78d400bf80>)
44 LOAD_GLOBAL 2 (globals)
47 CALL_FUNCTION 0 (0 positional, 0 keyword pair)
50 LOAD_GLOBAL 3 (locals)
53 CALL_FUNCTION 0 (0 positional, 0 keyword pair)
56 CALL_FUNCTION 2 (2 positional, 0 keyword pair)
59 POP_TOP

60 LOAD_GLOBAL 4 (int)
63 LOAD_GLOBAL 5 (input)
66 LOAD_CONST 6 (’enter final value: ’)
69 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
72 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
75 STORE_FAST 3 (fin)

7 78 LOAD_FAST 0 (x1)
81 LOAD_FAST 1 (x2)
84 BINARY_ADD
85 LOAD_FAST 2 (x3)
88 BINARY_ADD
89 LOAD_FAST 3 (fin)
92 BINARY_ADD
93 RETURN_VALUE

9 >> 94 LOAD_GLOBAL 0 (initial)
97 LOAD_CONST 7 (1)

100 INPLACE_SUBTRACT
101 STORE_GLOBAL 0 (initial)

#10 104 LOAD_GLOBAL 6 (compute34_compute)
107 LOAD_FAST 1 (x2)
110 LOAD_FAST 2 (x3)
113 LOAD_GLOBAL 0 (initial)
116 CALL_FUNCTION 3 (3 positional, 0 keyword pair)
119 RETURN_VALUE
120 LOAD_CONST 0 (None)
123 RETURN_VALUE

Figure 6.10: Bytecode for the second specialised compute function, i.e.,
compute34 compute.

104 Chapter 6 From µPython to full Python

to other requests of present and future use types of relevant variables at other positions. Any

resultant variables in the cache for a particular point are therefore relevant for calculating the

type checks to insert at that point.

6.9 Experiments

We now evaluate our implementation of preemptive type checking for a subset of the Python

language on both synthetic examples and selected benchmarks from the computer language

benchmarks game [4].

We start by describing the process of adapting these examples and benchmarks to our tool, taking

note of the general experience of this process and the usefulness of the information gathered by

our tool. We also measure key indicators such as the analysis time of our tool and the number of

assertions inserted while varying the tool’s parameters. Despite our tool not being optimised for

performance, we manage to achieve adequate performance on some typical Python scripts. An

important result that we present in this chapter is the effect of varying the execution point depth

N on the number of inserted assertions. The full results are tabulated in Figure 6.20.

6.9.1 Synthetic examples

We designed some examples that are small enough to show in full but that also demonstrate the

technology behind our tool. In particular, these examples demonstrate the effect of varying the

execution point depth on the number of inserted assertions. We subdivide this section according

to the different examples. In this section we sometimes show how the result of the source code

transformations look. However, we have to keep in mind that no source code transformations

take place in practice. Instead all the analysis and transformation takes place at bytecode level.

Example: erasefile

The first example, listed in Figure 6.11, is a small program that redefines variable x to be either

a string or an integer. Function mayusenum may or may not “erase” a file and call a function

usenum on x. This function is similar to intOp in µPython, and is defined such that it fails with

a TypeError if the argument passed is not a numeric type. We can see from this example that

whenever erasefile is called, usenum is also subsequently called.

We also list the reverse-engineered transformed code in Figure 6.12. As we can see, when the

length of the execution points is one, a type check assertion is inserted in _mayusenum. This

is because at that point, x can be either numeric or a string. If the execution points depth is two,

our tool produces two specialised versions of function mayusenum. One of these versions,

_mayusenum_2 does not need any assertions since x would be numeric in this context. In the

Chapter 6 From µPython to full Python 105

1 def erasefile():
2 ’’’Erases file with filename toerase.’’’
3 erase(toerase)
4 print(’file erased.’)
5
6 def mayusenum():
7 global x,toerase
8 if randbool():
9 toerase=’xyz’

10 erasefile()
11 usenum(x)
12
13 def main():
14 global x
15 x=’’
16 mayusenum()
17 x=5
18 mayusenum()

Figure 6.11: Original listing for example erasefile.

def _erasefile():
’’’Erases file with filename toerase
.’’’
erase(toerase)
print(’file erased.’)

def _mayusenum():
global x,toerase
if randbool():

checks that x is numeric
asserttype(globals(),locals())
toerase=’xyz’
_erasefile()
usenum(x)

def _main():
global x
x=’’
_mayusenum()
x=5
_mayusenum()

def erasefile():
’’’Erases file with filename toerase
.’’’
erase(toerase)
print(’file erased.’)

def _mayusenum_1():
global x,toerase
if randbool():

raises controlled exception
failfast(...)
toerase=’xyz’
erasefile()
usenum(x)

def _mayusenum_2():
global x,toerase
if randbool():

toerase=’xyz’
erasefile()
usenum(x)

def _main():
global x
x=’’
_mayusenum_1()
x=5
_mayusenum_2()

Figure 6.12: Transformed code for the example erasefile with maximum execution
point length 1 (left) and 2 (right).

106 Chapter 6 From µPython to full Python

def main():
erasefile()
if randbool():

x=’abc’
else:

x=34
if randbool():

usestr(x)
usenum(x)

else:
usenum(x)
usestr(x)

def main():
failfast(...)
erasefile()
if randbool():

x=’abc’
else:

x=34
if randbool():

usestr(x)
usenum(x)

else:
usenum(x)
usestr(x)

Figure 6.13: Original code (left) compared to transformed code (right) for the example
erasefile2.

other version, x would be a string and therefore we can raise a controlled exception at line 9 in

the transformed code, to preempt execution. If we run our tool setting the execution point depth

to 1, we get a warning that a type checking assertion needs to be inserted:

File "erasefile.py", line 9, in mayusenum

Variable x expected Number

On the other hand, if we set the maximum execution point length to 2, we get different warnings.

This time we get a confirmation that a failure will occur if the program runs up to that point.

Our error message is more informative and contains part of the stack trace:

File "erasefile.py", line 16, in main

File "erasefile.py", line 9, in mayusenum

Variable x expected Number but inferred as str

Example: erasefile2

In the previous chapter we have proved that preemptive type checking is at least linearly optimal

in terms of error detection. If executing a linear sequence of instructions is bound to raise a

TypeError, preemptive type checking will detect this at the entry to this block or earlier. This

example however demonstrates that in practice, preemptive type checking can detect type errors

earlier than at the entry of a basic block. The example in Figure 6.13 shows a program that is

bound to raise a TypeError on any branch that is taken. Our tool transforms the program in such a

way as to raise a TypeError at the entry point of the main function. Therefore, erasefile()

is not called at all.

Example: erasefile3

We modify the example erasefile2 to produce the example in Figure 6.14. Here, we have two

variables x and y which are alternatively set either a numeric or string value. Technically, all

Chapter 6 From µPython to full Python 107

1 def main():
2 erasefile()
3 if randbool():
4 x=’abc’
5 y=34
6 else:
7 x=34
8 y=’abc’
9 if randbool():

10 usestr(x)
11 usenum(y)
12 else:
13 usenum(x)
14 usestr(y)

Figure 6.14: Listing for the example erasefile3.

runs of this of this program should raise a TypeError. Unfortunately, the earliest point where pre-

emptive type checking can preempt this type error is at lines 10 or 13 and therefore erasefile

gets called on line 2. A model checking approach, where all possible runs of the program are

simulated, is necessary to guarantee optimality in general.

Example: fixpoint

This particular example listed in Figure 6.15 shows the advantages of fine-tuning the maximum

execution point depth setting of our tool. In function main, variables x1, x2 and x3 are

initialised to value None. Then, function fixit is called. Now, function fixit is defined

such that it can randomly call usenum on x1, x2 and x3 and return, or propagate the value of

x2 to x1, x3 to x2, and set x3 to be an integer, and then recursively call itself. We can see

that if the consequent branch is taken, for the first three calls of fixit, the program will raise

a TypeError, objecting that None is not numeric.

If we now look at the transformed program in Figure 6.16 for execution point length 1, we see

that our tool inserts a type checking assertion in the consequent branch that makes sure that

x1, x2 and x3 are numeric. If we increase the execution point length to 4 or higher, no type

checking assertions are inserted. Instead, specialised versions that insert a failure assertion at

the consequent branch for the first three recursive calls of fixit are generated.

Example: introduction

This is the example that was used in the introduction, i.e., shown in Figure 1.2. As in the

previous example, we note that the larger the execution point depth, the fewer type checks are

inserted.

108 Chapter 6 From µPython to full Python

def fixit():
global x1, x2, x3
if randbool():

usenum(x1)
usenum(x2)
usenum(x3)
return

x1=x2
x2=x3
x3=5
return fixit()

def main():
global x1,x2,x3
x1=x2=x3=None
fixit()

Figure 6.15: Original listing for example fixpoint

6.9.2 Real world benchmarks

We tested our implementation on a number of Python benchmarks and examples from the Com-

puter Language Benchmarks Game, a standardised benchmark suite for several languages [4].

This benchmark suite is used in various programming language publications [17, 67, 101, 30,

117, 113]. Although the benchmarks are not large, testing our type checker on these is still a

valuable exercise as it can expose certain bugs, scalability and usability issues.

Our implementation does not support the whole Python language. However, it supports enough

features to run these programs with minimal changes. For example, since we do not support

iterators or generators, all for loops were converted to while loops. Another cosmetic change

is that the main module’s body was placed in a function. We also simplified the string formatting

operations and provided type information for external functions such as cout.

Some benchmarks have been ported to Python from original code in statically typed languages.

Type errors should thus be rare. However, in one of the four benchmarks that we analysed,

mandelbrot-python3-3, which plots the Mandelbrot set on a bitmap, failure assertions

were inserted at two different points.

We now describe our experience using our tool on the different examples and benchmarks.

Benchmark: mandelbrot-python3-3

This benchmark is a simple program that plots the Mandelbrot set on a bitmap. The main part of

the program is a nested loop where loop variables x and y iterate through 0 to size and then a

pixel value is produced. This is the only benchmark that we found that raises a TypeError, due

to a tuple of bytes being passed to function cout instead of a byte string. The original code

of this benchmark can be seen in Figure 6.17 on the left. It is likely that the benchmark was

not well tested after porting it from Python 2.x to Python 3.x. We reach this conclusion because

one of the main differences between these two versions of Python is that unicode strings and

Chapter 6 From µPython to full Python 109

def _fixit():
global x1, x2, x3
if randbool():

check that x1, x2
and x3 are numeric
asserttype(globals(),locals())
usenum(x1)
usenum(x2)
usenum(x3)
return

x1=x2
x2=x3
x3=5
return _fixit()

def _main():
global x1,x2,x3
x1=x2=x3=None
_fixit()

def _fixit1():
global x1, x2, x3
if randbool():

failfast(...)
usenum(x1)
usenum(x2)
usenum(x3)
return

x1=x2
x2=x3
x3=5
return _fixit2()

def _fixit2():
global x1, x2, x3
if randbool():

failfast(...)
usenum(x1)
usenum(x2)
usenum(x3)
return

x1=x2
x2=x3
x3=5
return _fixit3()

def _fixit3():
global x1, x2, x3
if randbool():

failfast(...)
usenum(x1)
usenum(x2)
usenum(x3)
return

x1=x2
x2=x3
x3=5
return _fixit4()

def _fixit4():
global x1, x2, x3
if randbool():

usenum(x1)
usenum(x2)
usenum(x3)
return

x1=x2
x2=x3
x3=5
return _fixit4()

def _main():
global x1,x2,x3
x1=x2=x3=None
_fixit1()

Figure 6.16: Transformed code for example fixpoint with maximum execution point
length 1 (left) and maximum execution point length 4 (right)

110 Chapter 6 From µPython to full Python

9 def main():
10 cout = sys.stdout.buffer.write
11 size = int(sys.argv[1])
12 xr_size = range(size)
13 xr_iter = range(50)
14 bit = 128
15 byte_acc = 0
16
17 cout(("P4\n%d %d\n" % (size, size)).

encode(’ascii’))
18
19 size = float(size)
20 for y in xr_size:
21 fy = 2j * y / size - 1j
22 for x in xr_size:
23 z = 0j
24 c = 2. * x / size - 1.5 + fy
25
26 for i in xr_iter:
27 z = z * z + c
28 if abs(z) >= 2.0:
29 break
30 else:
31 byte_acc += bit
32
33 if bit > 1:
34 bit >>= 1
35 else:
36 cout((byte_acc,))
37 bit = 128
38 byte_acc = 0
39
40 if bit != 128:
41 cout((byte_acc,))
42 bit = 128
43 byte_acc = 0
44
45 main()
46
47
48 .

9 cout = sys.stdout.buffer.write
10 def main():
11 bit = 128
12 byte_acc = 0
13 cout(asciiencode(’P4\n%d %d\n’%(size,

size)))
14 size = float(argv[2])
15 y=0
16 x=0
17 while y<size:
18 fy = 2j * y / size - 1j
19 while x<size:
20 z = 0j
21 c = 2. * x / size - 1.5 + fy
22 i=0
23 while i<50:
24 z = z * z + c
25 if abs(z) >= 2.0:
26 break
27 i+=1
28 else:
29 byte_acc += bit
30
31 if bit > 1:
32 bit >>= 1
33 else:
34 cout((byte_acc,))
35 bit = 128
36 byte_acc = 0
37 x+=1
38
39 if bit != 128:
40 cout((byte_acc,))
41 bit = 128
42 byte_acc = 0
43 y+=1
44
45 a=Analyser(main)
46 a.printWarnings()
47 a.emit(globals())
48 _main()

Figure 6.17: Original listing of the mandelbrot-python3-3 code (left) vs. manually
modified code (right).

byte strings cannot be interchanged. If a byte string is used in place of a unicode string, a

TypeError is raised. The benchmark passes a tuple of bytes instead of passing a bytearray

or bytes object to external function sys.stdout.buffer.write. When we ran our

tool, it immediately flagged up a warning. The only modifications that were performed for this

benchmark to work were to convert the for loop into a while loop and encapsulate all code in

the benchmark into a function main. We also simplified the printing operation and pulled the

assignment to cout outside the main program.

Preemptive type checking detects the possible type failures and outputs the following warnings

before executing the main function:

Failure 1 - partial Traceback:

File "mandelbrot-python3-3.py", line 34, in main

Expected bytes or bytearray but found tuple

Failure 2 - partial Traceback:

Chapter 6 From µPython to full Python 111

File "mandelbrot-python3-3.py", line 40, in main

Expected bytes or bytearray but found tuple

These two failures correspond to the lines cout((byte_acc,)). Running the original

benchmark (on the left) in Python without preemptive type checking raises a TypeError, with

the following output:

Traceback (most recent call last):

File "mandelbrot-python3-3.py", line 37, in <module>

main()

File "mandelbrot-python3-3.py", line 33, in main

cout((byte_acc,))

TypeError: ’tuple’ does not support the buffer interface

However, with our preemptive type checking analysis we got more precise information regarding

the type errors, including a second error where cout is called with a tuple.

Benchmark: pidigits-python3-2

This program calculates the first N digits of Pi and prints the digits 10-to-a-line, with the running

total of digits calculated. This program adapts the step-by-step Rabinowitz and Wagon’s spigot

algorithm [45]. In order to adapt this benchmark to our tool, we removed the usage of a math

library called MPZ and substituted these operations with operations from the standard library.

This did not require a lot of modifications as this library is meant as a drop-in replacement. MPZ

provides higher precision math operations than the standard Python library, but the semantics of

these operations are essentially the same.

As expected, no type errors were flagged by our tool and no assertions needed to be inserted.

Benchmark: fasta

This program generates DNA sequences, by copying from a given sequence and by weighted

random selection from 2 alphabets [4]. It converts the expected probability of selecting each

nucleotide into cumulative probabilities, matches a random number against those cumulative

probabilities to select each nucleotide and uses this linear congruential generator to calculate a

random number each time a nucleotide needs to be selected.

This program makes use of a number of standard library calls to str.join and also imple-

ments a stateful random number generator. Since we do not support attribute access, we replace

calls to str.join to an equivalent library call that does the same thing. The random number

generator uses a Python language feature called generators, which are similar to coroutines. This

is a feature that we do not support. Indeed no Python bytecode analysis tool to our knowledge

supports this feature. We get around this problem by adding a type annotation to the random

112 Chapter 6 From µPython to full Python

number generator. This way, the analyser ignores the internal implementation details of the

generator and uses the type information from the annotation.

Python also features syntax sugar for string slicing and concatenation. Unfortunately, this is not

supported by our tool so we replaced these with the same operations from library functions. A

shortcoming of our type system that starts to appear when adapting this benchmark is the lack

of polymorphic types. Python programmers tend to make heavy use of Python’s available data

structures. Being able to infer that, for example, a tuple is not simply a tuple but a 2-tuple of a

string and a number could considerably increase the accuracy of our inferred types.

We overcome some of these problems by encapsulating library calls and explicitly adding the

type information. The result of losing type information is an increase in inserted assertions that

would always succeed. We tested this benchmark on our tool and we can see from the results

in Figure 6.20 that no type checks were inserted. This means that this benchmark does not have

any type errors.

Benchmark: meteor-contest

This program finds solutions to the Meteor Puzzle board [4]. This is made up of 10 rows of 5

hexagonal Cells. There are 10 puzzle pieces to be placed on the board. Each puzzle piece is

made up of 5 hexagonal Cells. At 206 lines of code, it is the largest one tested. Although this

might seem like a small program, it is the length of a typical Python script. In comparison, our

entire tool is implemented in less than 800 lines of Python code. Another thing to keep in mind

is that the C++ version of this benchmark is 500 lines of code. We also have to keep in mind

that our analysis can be applied to particular functions rather than to the whole program.

This particular benchmark uses more functions from the standard library than the others we

tested. Type information was added to these external functions. One of the difficulties in han-

dling this benchmark is the use of data structures containing anonymous functions. These func-

tions are contained in a dictionary, retrieved at runtime and are repeatedly applied in a loop.

Since our control flow analysis mechanism is not sophisticated enough to determine which func-

tions are called, we resort to manually unrolling the loop.

A possible failure was statically inferred by our analyser for this benchmark. This occurred in

function findFreeCell, in Figure 6.18. Our tool produced the following output:

Failure 1 - partial Traceback:

File "meteor.py", line 49, in findFreeCell

Expected tuple but found NoneType

...

However, when running this benchmark, no type errors were encountered. When preemptive

type checking was turned on, no preemptive type errors were raised either. This means that

the program execution never reached beyond line 49 in findFreeCell. We can immediately

Chapter 6 From µPython to full Python 113

45 def findFreeCell(board):
46 for y in range(height):
47 for x in range(width):
48 if board & (1 << (x + width*y)) == 0:
49 return x,y

Figure 6.18: Code snippet from meteor-contest showing possible type error. There are
branches where this function does not return a free cell.

see however that if no free cells are found in a board, this function will not return anything.

A Python function that does not return anything by default returns None. This means that if

nothing is returned a type error would occur, as None cannot be unpacked in the same way as

a tuple. The programmer is therefore assuming an invariant that asserts that a “free cell” will

always be found in the “board”. Our tool explicitly inserts an assertion that the loop will never

terminate without returning from within the loop. If this program is run using preemptive type

checking, a preemptive type checking error is raised as soon as the loop at line 47 exits. For this

benchmark, all the inserted type checks are expected to hold and some of them occur because

type information is lost when items are inserted into lists and retrieved again.

Question: stackoverflow

We firmly believe that preemptive type checking can be of help especially to programmers who

are just starting to learn the language. This is especially true if the analysis can be used in a

tool that can issue warnings prior to running the code. We therefore tested our implementation

on code that was posed by a Python beginner on stackoverflow.com.1 The code can be seen

in Figure 6.19. This user complained that the program initially seems to run and that half way

through the interaction with it a TypeError is raised. In this program, the reason a type error

occurs is that user input is of type Str but this input is being used in a mathematical expression

without converting it to a number.

Since this question was based on Python 2.x, we had to run the standard 2to3 toolchain to

automatically convert this to Python 3.x syntax. When we analysed our program using preemp-

tive type checking, our implementation statically produced warnings that corroborate the answer

given to this question by Python developers. In particular it indicates all the locations where a

type error would occur.

Failure 1 - partial Traceback:

File "stackoverflow.py", line 36, in main

Variable level expected Number but found str

Failure 2 - partial Traceback:

File "stackoverflow.py", line 39, in main

Variable level expected Number but found str

Failure 3 - partial Traceback:

File "stackoverflow.py", line 42, in main

1http://stackoverflow.com/questions/320827/python-type-error-issue

114 Chapter 6 From µPython to full Python

12 status = 1
13
14 print "[b][u]magic[/u][/b]"
15
16 while status == 1:
17 print " "
18 print "would you like to:"
19 print " "
20 print "1) add another spell"
21 print "2) end"
22 print " "
23 choice = input("Choose your option: ")
24 print " "
25 if choice == 1:
26 name = raw_input("What is the spell called?")
27 level = raw_input("What level of the spell are you trying to research?")
28 print "What tier is the spell: "
29 print " "
30 print "1) low"
31 print "2) mid"
32 print "3) high"
33 print " "
34 tier = input("Choose your option: ")
35 if tier == 1:
36 materials = 1 + (level * 1)
37 rp = 10 + (level * 5)
38 elif tier == 2:
39 materials = 2 + (level * 1.5)
40 rp = 10 + (level * 15)
41 elif tier == 3:
42 materials = 5 + (level * 2)
43 rp = 60 + (level * 40)
44 print "research ", name, "to level ", level, "--- material cost = ",
45 materials, "and research point cost =", rp
46 elif choice == 2:
47 status = 0

Figure 6.19: Code that raised type errors submitted by a stackoverflow user.

Variable level expected Number but found str

6.10 Results

In this section we summarise the results of all experiments. These were conducted on an other-

wise idle Intel Xeon W3520 workstation running at 2.67GHz. All times given are in millisec-

onds measured by system calls to get the current time. We set the cutoff time to one hour. We

measure the performance of our tool using the following criteria:

Analysis time. This is the time required for our tool to perform the analysis of the program.

This includes a control flow analysis, type inference and the calculation of assertions and

fail edges. Naturally, since the control flow graph is potentially larger if the maximum

length of the execution points is increased, we expect the analysis time to be longer.

Transformation time. This is the time required to take the current program and, given the

information gathered from the analysis phase, transform the program and all functions

Chapter 6 From µPython to full Python 115

called from within this program. We expect that the transformation time will depend on

the size of the control flow graph.

CFG size. This is the number of nodes in the control flow graph. As the execution point depth

is increased, the CFG is also expected to become larger. The size of the CFG also depends

on the size of the program.

Number of dynamic checks in the specialised functions. This is the number of estimated type

checks present in the code, if performed by the standard interpreter. For example, in the

statement f(x, y), a check is made to see whether f is a callable function. If f is a stan-

dard library function that expects x and y to have particular types, a check is made for

every argument. Therefore this statement requires 3 type checks. We estimate the number

of dynamic checks by accumulating this for every instruction associated with a node in

the CFG.

Number of fail edges. This is the number of failing assertions inserted, i.e., the number of

edges in the control flow graph beyond which the program is guaranteed to fail. Failing

assertions that raise a controlled exception introduce no runtime overhead as any of these

is typically only executed once, if ever.

Number of inserted checks. The number of inserted type checks in the specialised code. Type

checking assertions can potentially introduce runtime overheads and therefore the fewer

of these need to be inserted, the better.

We present the full results of our benchmarks in Figure 6.20. An important result that we note

is that failing assertions are only inserted within the original code if the original code contains

latent type errors. From the results in Figure 6.20, we can see that for most Python modules,

the performance of the analyser is adequate. In fact, we are able to analyse a program more

than 30,000 nodes in the CFG in under half an hour. Inevitably, this program analysis and

transformation step will increase the initialisation time, just as a JIT compiler would increase

the initialisation time of a program. Most of the runtime of our tool is spent on the control

flow analysis and the type inference stages. We expect that the algorithms used can be re-

implemented in a faster manner and using a faster programming language, as Python is around

80× slower than C[4].

Another important result that we note is that when the maximum execution point depth is in-

creased, the number of fail edges increases and the number of inserted checks decreases relative

to the original number of checks. Ideally, we do not want our type checking mechanism to in-

sert any type checks, as these increase the computation required to run the code. On the other

hand, assertions that always fail do not impose a computation expense on the program, as these

are typically only executed once, if ever. Therefore, our results are positive because they show

that if more computation is dedicated in the analysis phase, the modified program has a smaller

number of type checks to compute at runtime.

116 Chapter 6 From µPython to full Python

max. exec. analysis transformation CFG dynamic fail inserted
point length time (ms) time (ms) size checks edges checks
erasefile, 23 lines of code

1 59 0 38 12 0 1
2 89 1 54 18 1 0
3 100 1 62 22 1 0
4 101 1 62 22 1 0

erasefile2, 24 lines of code
1 50 0 43 17 1 0
2 52 0 43 17 1 0
3 53 0 43 17 1 0
4 53 0 43 17 1 0

fixpoint, 24 lines of code
1 82 0 40 11 0 3
2 155 1 67 21 1 2
3 249 2 94 31 2 1
4 360 3 121 41 3 0

introduction, 21 lines of code
1 197 1 67 39 0 3
2 278 2 97 57 1 2
3 414 3 127 75 2 1
4 526 4 157 93 3 0

stackoverflow, 48 lines of code
1 295 2 157 82 3 0
2 931 3 157 82 3 0
3 298 2 157 82 3 0
4 294 3 157 82 3 0

pidigits-python3-2, 40 lines of code
1 257 2 131 62 1 0
2 257 2 131 62 1 0
3 257 2 131 62 1 0
4 258 2 131 62 1 0

mandelbrot-python3-3, 46 lines of code
1 312 2 128 59 2 0
2 313 2 128 59 2 0
3 312 2 128 59 2 0
4 316 2 128 59 2 0

fasta, 96 lines of code
1 358 2 154 87 0 0
2 631 4 208 120 0 0
3 631 4 208 120 0 0
4 634 5 208 120 0 0

meteor, 206 lines of code
1 9764 16 813 409 1 10
2 42822 44 1719 869 1 35
3 247689 210 6357 3215 1 179
4 1510357 1294 30945 15587 1 1043

Figure 6.20: Table of results.

Chapter 6 From µPython to full Python 117

Our tool is implemented as a prototype, and therefore its performance and scalability should not

be used to judge the suitability of preemptive type checking. We believe preemptive type check-

ing can successfully be implemented for languages that are similar to Python or new languages

designed with this type checking mechanism in mind. Our particular tool can still be used on

medium sized scripts or critical parts of larger programs, as long as only a limited subset of

Python is used. From the performance figures in the table, we note that our tool is very usable

for programs up to 200 lines of code. Looking at the table in Figure 6.20, we can easily note

that the analysis time seems to be a function of the number of the CFG and the lines of code.

If we discount the control flow analysis step, the reason why our analysis does not scale so well

is that a global analysis is very expensive. If we could ignore global variables, our tool would

be much faster. We could mitigate this problem by performing an escape analysis for every

global variable and discounting large parts of the control flow graph where a global variable is

not reassigned. We also ran a profiler on our analyser to determine where most of the time is

being spent and it appears that around 10 to 20 percent of the time is being spent calculating the

hash code of objects such as instructions, execution points, edges and the like. This is because

we rely on set and dictionary operations for most of our algorithms. This would be a perfect

kind of application where a system that can generate optimised hashing operations [47] would

increase the performance.

6.11 Conclusions

In this chapter we have shown how to write a type checker that implements preemptive type

checking, implemented as a Python 3.3 library that can be loaded with the target program. It

can be used at runtime to transform an existing function. When this function is then executed, it

is executed using preemptive type checking.

Although our implementation is not yet a production quality tool, we have shown that it is

possible to implement preemptive type checking. In a language such as Python, we do not even

need to modify the interpreter but to implement the tool as a library that can be imported into

the users’ code. The implementation itself was coded in less than 800 lines of code.

We have also evaluated our implementation on both synthetic examples and selected benchmarks

from the computer language benchmarks game [4]. We have shown that all our high level

research objectives, defined in Section 1.3 have been met.

We have shown that our simple tool can handle small to medium Python scripts that do not use

object oriented features. We have seen how these real world scripts can be manually edited in

case these use unsupported features. An important result that we present in this chapter is the

relation between the maximum execution point length and the number of inserted assertions. In

all the examples and benchmarks used in this chapter, all type errors were caught in advance.

Our tool does not produce any false positives, i.e., if a program did not raise any type errors

118 Chapter 6 From µPython to full Python

before using our tool, it did not raise any controlled exceptions when the program was run with

preemptive type checking.

Chapter 7

Conclusion and Future work

In this dissertation, we have introduced a new method for type checking dynamically typed

programs that combines elements of both static and dynamic type checking. It is described as

preemptive type checking since the actual type checks happen much earlier than in dynamic

typing. We have proven that any program that can run to completion under dynamic typing

without raising a type error will also not raise any errors under preemptive type checking. We

have also demonstrated an implementation for a subset of Python and have evaluated it on some

synthetic examples and also on some benchmarks from the computer languages benchmarks

game [4].

In this last chapter we summarise the main contributions, propose further work directions, and

conclude our research on preemptive type checking.

7.1 Main contributions

The main contribution of this thesis is the concept of type error preemption for dynamically

typed languages. Our type checking mechanism tries to preempt all type errors at the earliest

possible point for which a type error is inevitable. This is the most novel contribution, and a

problem that we have effectively solved in our work. Preemptive type checking is the only type

checking mechanism in which any program that can run to completion under dynamic typing

without raising a type error will also not raise any errors under it. We have made a number of

smaller but equally novel contributions in order to make it possible to create a type checking

mechanism as described in this dissertation.

Our first contribution in Chapter 3 is a small Python like language which we call µPython. This

includes the formalisation and definition of µPython source code, together with its bytecode

language, compiler and the semantics of its bytecode.

Our second contribution is a type system and analysis technique for µPython. We have proven

that the type information obtained by the type analysis is an overapproximation of the actual

119

120 Chapter 7 Conclusion and Future work

types that would appear at runtime. A part of this contribution is the development of the concept

of present and future use types. The distinction between these types can be leveraged in two

ways. Firstly, this allows the insertion of type checks at earlier points, which we exploit in

preemptive type checking. Secondly, error messages can explain in greater detail why some

code should not be allowed to run. Another novel contribution is the concept of trails as part

of the inference mechanism. Trails will always guarantee the termination of the type inference

algorithm. This is true irrespective of the structure of the type language. Trails are particularly

suited when inferring the type of a variable in situations such as the example in the introduction

(see Figure 1.1).

We have also contributed to the area of control flow analysis. We introduce the concept of

abstracting nodes in the control flow graph as call stacks that are truncated to a finite depth. The

memory overhead for low execution point depths N is minimal with an efficient representation,

as used in our implementation. When a depth of one is selected, the nodes effectively become

program locations.

Our implementation shows that it is possible to build a tool that is sophisticated enough to

perform the kinds of analysis and program transformations required to support preemptive type

checking. To make this possible, there are several innovations in our implementation. Primarily,

we perform a “static analysis at runtime”, which can be performed once during initialisation to

offset any performance issues. Another innovation is that we substitute the bytecode of functions

in memory with specialised versions that have type checks inserted into them. In the future,

this significant machinery could be further leveraged to perform performance optimisations by

techniques such as partial evaluation.

7.2 Future work directions

Throughout our work, we have mostly focused on type error preemption. However, the machin-

ery developed to make this possible can be easily extended to offer other useful features.

Enhanced error reporting

One of the first extensions is that of passing around the execution point at which a type was in-

troduced with all present and future use types. Using this information, whenever a type incom-

patibility is detected a more informative error message can be constructed. This could indicate

the source (the original assignment) and the sink (the use). For example, the following program

on the left could be transformed into the program on the right, where more information is given

in the error message.

Chapter 7 Conclusion and Future work 121

1
2
3
4 x=’4’

5 ..

6 ..

7 intOp(x)

raise PreemptiveTypeError(

’Expected int at line 7, but

found a str at line 4’)

x=’4’

..

..

intOp(x)

Runtime type inference - metaprogramming and reflection

Python is not a metaprogramming language in the same sense as Lisp [69], MetaML [104],

Jumbo [58] or MetaAspectJ [119] as it is not designed to manipulate syntactic program struc-

tures. However, most use cases for a metaprogramming language can be handled using Python’s

metaprogramming and reflective features such as metaclasses, eval and exec. There are also

other functions such as getattr or setattr that can alter an arbitrarily named field, deter-

mined at runtime. Modules can also be dynamically loaded, and different modules would have

differently typed functions.

Because of these features, in general one cannot determine which modules are being imported.

We propose that instead of invoking the type checking mechanism once, we can continuously

update the type information as metaprogramming operations are invoked. In this way, if a func-

tion is dynamically created, we can apply the type inference to it and also insert more assertions

at runtime. One could describe this as “just-in-time type checking”.

There are some design decisions we already take in order to accommodate for this feature.

Since some of the type inference has to be performed at runtime, where we can only inspect

the bytecode, this is the natural way to perform type inference. One other design decision is

to implement the type inference in the same language as the target language. This facilitates

the interaction between the target program and the type inference. To support newly created

functions, the algorithm in Figure 6.7 needs to be extended. When dispatching over the functions

that have been specialised for a particular point, a newly created function that has not been

analysed may be found. In this case, the analysis process needs to be called again on this new

function.

If we adopt this functionality, we can support metaprogramming and reflection. We now show

some of the functionality available in Python to make this possible.

First class functions and decorators. Functions or classes can be passed around like regu-

lar objects. This creates the opportunity to write decorator functions. These are higher-order

functions that given a function return the same function wrapped with some extra concerns such

as logging or caching. There is also syntactic support for decorators [100]. Figure 7.1 shows a

Python decorator that performs simple memoisation.

122 Chapter 7 Conclusion and Future work

def simplememo(fn):
’’’Ignores any arguments to a function’’’
cachename=’_’+fn.__name__
def memofn(self,*args):

if not hasattr(self,cachename):
setattr(self,cachename,fn(self,*args))

return getattr(self,cachename)
return memofn

Figure 7.1: A Python decorator.

Class and function generation. Apart from function decorators, functions and classes can also

be directly manipulated. This has been useful in our implementation.

A function’s document string, bytecode and argument list can be introspected and new func-

tions and methods can be created. These features however are seldom used, as these require

an advanced understanding of the internal details of Python. These features are also not fully

supported by alternative Python implementations such as PyPy [87], Jython [57] or IronPython

[118].

A commonly used feature however is to rebind methods in classes and objects. This effectively

changes the behaviour of the objects at runtime. The rebound methods can be created from

existing functions or by wrapping existing functions with extra logic. This is usually done using

class decorators [114]. This has been used to implement AutoEq and AutoEqImmutable in

our implementation, see Appendix.

Reflection and Introspection. Having a variable number of positional and keyword arguments

makes it possible to create functions with a dynamic interface that can change programmati-

cally. For example, it is possible to substitute any arbitrary function by writing another function

that can morph its interface according to the original function. This is quite useful for testing,

especially for generating mock objects, classes or functions.

A tool at our disposal for creating classes with a “dynamic” interface is that of descriptors,

which are special functions in an object or class that control the way attributes are loaded. These

are also responsible for binding functions to particular objects, thus effectively turning simple

functions into bound methods. A typical way to offer a dynamic interface is to override the

__getattr__() and __setattr__() methods when defining a class. When an attribute

of an object is accessed using the dot operator, a call is made to the __getattr__() method

in the object and the request can then be handled by it.

A typical use case for overriding methods such as __getattr__() is the implementation

of generic proxy classes. A generic proxy class can intercept any requests and forward these,

perhaps via a network link. The actual classes are called using the equivalent Python functions

getattr and setattr. This does not require the physical generation of class stubs based on

the actual classes.

Chapter 7 Conclusion and Future work 123

eval() and exec(). The functions eval() and exec() evaluate and execute Python expres-

sions and statements respectively. The input to these functions can be either a string representing

Python code, an AST object, or a code object that represents compiled bytecode. Since strings

can be created programmatically, these two functions clearly give Python metaprogramming

capabilities.

Generating source code as Python strings and passing these strings to functions such as eval()

is a very crude way to make use of metaprogramming. The use of these features is generally

discouraged [86], especially when working in a team.

Metaclasses. Metaclasses in Python [56] are classes that inherit from the class type. Classes

in Python are instances of type. The class body is evaluated just as a function block. The

resulting local variables are placed in a dictionary like object as dictated by the metaclass and

referred to as the class dictionary. By default this is a dictionary that does not preserve order.

A metaclass (for example type) is then called and the class name, a list of base classes and

the class dictionary are passed to the constructor. The constructor is responsible for creating the

actual class.

It is possible to override the constructor of a metaclass. This gives the programmer power to

change the semantics of class creation, and ultimately of object-oriented programming. Meta-

classes are rarely used in practice, as most functionality can usually be achieved using class

decorators. The main difference between metaclasses and class decorators is that class decora-

tors do not allow any changes to the type of data structure used by the class dictionary.

Dynamic code loading. All imports in Python are done dynamically. The import statement

in Python dynamically loads the module and executes it line by line. The resulting names

are loaded into a new namespace or the current namespace, depending on the usage of the

import statement. This feature allows a program to selectively load the required modules

depending on the current context and allows a good level of flexibility that traditionally requires

metaprogramming.

Supporting other languages and more language features

Our proof of concept implementation of preemptive type checking was specifically written for

Python. It is a challenge to create a type system that supports object oriented programming

in this language. Although there are type systems that support object oriented programming

in JavaScript [11, 106], these are not necessarily applicable to Python. Python’s object system

makes it extremely difficult to statically infer any information about objects, due to features

such as descriptors. Preemptive type checking can however be easily applied to JavaScript. The

semantics of JavaScript [48] is better understood than Python’s, and static type systems have

been applied to JavaScript with various degrees of success [11, 106, 49].

124 Chapter 7 Conclusion and Future work

1 class A:
2 def foo(self):
3 return ’a’
4 class B:
5 def foo(self):
6 return 34
7 testset={A(),B()} # put A and B objects in a set
8 min(t.foo() for t in testset) # find the minimum value of foo()
9 .

10 .
11 TypeError: unorderable types: str() < int()

Figure 7.2: Calling a method on objects in a set.

So far, our type inference supports local and global variables, basic control flow, the runtime

stack and function declarations (nested or otherwise). There are however other features that

would make the supported language more usable.

Built-ins: It would be beneficial to manually type a larger subset of built-ins. This simply

involves adding a module with initial types of the built-ins.

Objects and closures: Objects are similar to records, but, since Python is a dynamically typed

language, these do not have a rigid structure. In fact, if any function is called and a particular

object is accessible within the scope (perhaps it is passed as argument), any of its fields could

be mutated. To give better support for object mutation, closures ideally should be supported as

well. Introducing structural types [80] to the type language might be a way to support objects.

Parametric polymorphism: The type language, together with the type operations such as meet

and join can be extended to support parametric polymorphism.

Containers and iterators: Most loops in Python are performed over iterators. In order to

support these language features, we need to investigate whether our type system could support

parametric polymorphism first.

Control flow analysis: The analysis carried out by preemptive type checking is parametric with

respect to the control flow analysis. The better the control flow analysis, the better the results

we can get. Ultimately, the reason why a lot of features of Python are not supported in our

implementation is that we cannot perform a proper control flow analysis. In the example in

Figure 7.2, at line 8, it is difficult to determine that the result from foo() can be either a string

or an integer. The control flow analysis must determine that the call to foo to any object in

testset can be either foo defined at line 2 or foo at line 5.

Type-directed runtime optimisation

A lot of machinery has been developed to make preemptive type checking possible. Some of

this machinery can be leveraged to increase the performance of the Python code that has been

analysed. Since this analysis is carried out at runtime, some of the functions and values in the

Chapter 7 Conclusion and Future work 125

global variables would be resolved. Also, we can use the results from our type inference process

to generate optimised versions of the functions under test. We could start with some simple

optimisations on the bytecode itself, such as:

• Partially evaluating the bytecode with the runtime information available and the informa-

tion inferred from our sophisticated static analysis.

• Inlining functions; our bytecode emitter can be modified to do so.

• Eliminating dead code.

These optimisations are easy to implement with the current machinery but will not yield a

tremendous performance increase. We expect a much higher performance increase if instead

of emitting bytecode, we could generate C code that implements the functionality of the byte-

code. This would interact with the original program via the Python C API. Generating C code is

only possible if the correct types of the variables and a call graph can be resolved. In effect, we

could turn our implementation into a Just-In-Time compiler. This extension to our work would

entail a modest amount of engineering effort, but this way the cost of developing a control flow

analyser and type analyser for preemptive type checking can be amortised with the performance

advantages that JIT compilation brings.

7.3 Concluding Remarks

Dynamically typed languages are used in a wide range of sophisticated applications, such as

JavaScript on the browser, web servers or on NoSQL databases. Languages such as Python or

JavaScript are used to implement full-sized enterprise applications [74], daemons and also a

number of server side scripts. The reliance on this kind of languages has increased significantly

throughout the last 10 years and is projected to increase even further. Traditionally, programs

could be type-checked either statically or dynamically. The latter method is by definition the

only option available for dynamically typed languages such as Python as computing a static

type safety guarantee is not possible. However, the former method could give a type safety

guarantee before even running the program. With preemptive type checking, we have broken

the dichotomy between static and dynamic type checking, by trying to push the type checking

as early as possible.

Our work is not the first attempt to reconcile both facets of static and dynamic typing. For

example, gradual typing [96] makes it possible to mix static and dynamically typed languages

together. However, gradual typing does not guarantee anything about the dynamically typed

portion of a program. Soft typing [22] introduces the concept of narrowing functions, whereby

a dynamically typed program is transformed into a statically typed program with explicit casts.

This, however, reduces the expressiveness of the language. The existing implementations [116]

126 Chapter 7 Conclusion and Future work

have not been applied to dynamically typed languages with a global state and re-definable func-

tions.

We have developed a new method for type checking dynamically typed programs, where we try

to preempt type errors as early as possible. Amongst other things, this helps the programmer

find type errors in his code. Programs can raise controlled exceptions much earlier in case of a

type error, thus reducing the time required to test a system. We have also demonstrated how such

a system can be effectively implemented for a subset of the real Python language and shown its

usefulness on some examples.

References

[1] Mars Climate Orbiter Mishap Investigation Board Phase I Report. Technical report,

NASA, 1999.

[2] ECMA-262: ECMAScript Language Specification. Technical report, ECMA Interna-

tional, 2011.

[3] TIOBE Programming Community Index. Technical report, TIOBE Software, 2012.

[4] The Computer Language Benchmarks Game, 2013.

[5] Martı́n Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic typing in a

statically typed language. ACM Transactions on Programming Languages and Systems,

13(2):237–268, April 1991.

[6] Ole Agesen, Jens Palsberg, and Michael I. Schwartzbach. Type Inference of SELF: Anal-

ysis of Objects with Dynamic and Multiple Inheritance. In Proceedings of ECOOP, pages

247–267, 1993.

[7] Amal Ahmed, Robert Bruce Findler, Jacob Matthews, and Philip Wadler. Blame for all.

In Proceedings of STOP, 2009.

[8] Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing with conditional

types. In Proceedings of POPL, pages 163–173, 1994.

[9] Jong-hoon An, Avik Chaudhuri, and Jeffrey S. Foster. Static Typing for Ruby on Rails.

In Proceedings of ASE, pages 590–594, November 2009.

[10] Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Matsakis. RPython: a

step towards reconciling dynamically and statically typed OO languages. In Proceedings

of DLS, pages 53–64, 2007.

[11] Christopher Anderson and Paola Giannini. Towards type inference for JavaScript. In

Proceedings of ECOOP, pages 428–452, 2005.

[12] John Aycock. A brief history of just-in-time. ACM Computing Surveys, 35(2):97–113,

June 2003.

127

128 REFERENCES

[13] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a transparent dy-

namic optimization system. In Proceedings of PLDI, volume 35, pages 1–12, 2000.

[14] Ira D. Baxter, Christopher Pidgeon, and Mehlich Mehlich. DMS: program transforma-

tions for practical scalable software evolution. In Proceedings of ICSE, pages 625–634,

2004.

[15] Gavin Bierman, Erik Meijer, and Mads Torgersen. Adding dynamic types to C#. In

Proceedings of ECOOP, 2010.

[16] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Tracing the

meta-level: PyPy’s tracing JIT compiler. In Optimization of Object-Oriented Languages

and Programming Systems, pages 18–25. ACM, 2009.

[17] Carl Friedrich Bolz and Laurence Tratt. The Impact of Meta-Tracing on VM Design and

Implementation. Science of Computer Programming, 2013.

[18] Alan H. Borning and Daniel H. H. Ingalls. A Type Declaration and Inference System for

Smalltalk. In Proceedings of POPL, pages 133–141, 1982.

[19] Gilad Bracha. Pluggable type systems. In OOPSLA workshop on revival of dynamic

languages, 2004.

[20] Gilad Bracha and David Griswold. Strongtalk: Typechecking Smalltalk in a production

environment. In Proceedings of OOPSLA, pages 215–230, 1993.

[21] Luca Cardelli. Type systems. ACM Computing Surveys, 26(1), 1996.

[22] Robert Cartwright and Mike Fagan. Soft typing. In Proceedings of PLDI, pages 278–292,

1991.

[23] Ravi Chugh, David Herman, and Ranjit Jhala. Dependent types for JavaScript. ACM

SIGPLAN Notices, 47(10):587, November 2012.

[24] Alonzo Church. A Formulation of the Simple Theory of Types. The Journal of Symbolic

Logic, 5(2):56, June 1940.

[25] Consel Consel and Olivier Danvy. Tutorial notes on partial evaluation. In Proceedings of

POPL, pages 493–501, 1993.

[26] Pascal Costanza. Dynamic vs. Static Typing — A Pattern-Based Analysis. Proceedings

of Workshop on Object-oriented Languages, 2004.

[27] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Proceedings

of POPL, 1977.

[28] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Pro-

ceedings of POPL, pages 207–212, 1982.

REFERENCES 129

[29] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order. Cambridge

University Press, 1990.

[30] Matthew Davis, Peter Schachte, Zoltan Somogyi, and Harald Sondergaard. Towards

region-based memory management for Go. In Proceedings of MSPC, pages 58–67, 2012.

[31] Rodrigo B. de Oliveira. The Boo programming language, 2005.

[32] Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and Matthias Felleisen. Cor-

rect blame for contracts: no more scapegoating. In Proceedings of POPL, pages 215–226,

2011.

[33] Bruce Eckel. Strong Typing vs. Strong Testing. In Joel Spolsky, editor, The Best Software

Writing I, pages 67–77. Apress, 2005.

[34] Evan R. Farrer. A Quantitative Analysis of Whether Unit Testing Obviates Static Type

Checking for Error Detection. M.Sc Thesis, California State University, 2011.

[35] Jerome A. Feldman. A Formal Semantics for Computer-Oriented Languages. PhD thesis,

Carnegie Institute of Technology, 1964.

[36] Mathias Felleisen. From Soft Scheme to Typed Scheme: 20 Years of Scripts to Program

Conversion (Invited talk). Proceedings of STOP, 2009.

[37] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In

Proceedings of ICFP, pages 48–59, September 2002.

[38] Cormac Flanagan. Hybrid type checking. In Proceedings of POPL, pages 245–256, 2006.

[39] Python Software Foundation. Python. Available online: http://www.python.org.

[40] Michael Furr, Jong-hoon (David) An, and Jeffrey S. Foster. Profile-guided static typing

for dynamic scripting languages. In Proceedings of OOPSLA, pages 283–300, 2009.

[41] Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael Hicks. Static type

inference for Ruby. In Symposium on Applied Computing, pages 1859–1866, 2009.

[42] Yoshihiko Futamura. Partial Evaluation of Computation Process - An Approach to a

Compiler-Compiler. Higher-Order and Symbolic Computation, pages 381–391, 1999.

[43] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Moham-

mad R. Haghighat, Blake Kaplan, Graydon Hoare, Boriz Zbarsky, Jason Orendorff, Jesse

Rederman, Edwin Smith, Rick Reitmaier, Michael Bebenita, Mason Chang, and Michael

Franz. Trace-based just-in-time type specialization for dynamic languages. In Proceed-

ings of PLDI, pages 465–478, 2009.

[44] Andreas Gal and Michael Franz. Incremental dynamic code generation with trace trees.

Technical Report ICS-TR, 2006.

130 REFERENCES

[45] Jeremy Gibbons. Unbounded Spigot Algorithms for the Digits of Pi. The Mathematical

Association of America, 2005.

[46] Adele Goldberg, David Robson, and Michael Harrison. Smalltalk-80: the language and

its implementation. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,

1983.

[47] Neville Grech, Julian Rathke, and Bernd Fischer. JEqualityGen: generating equality and

hashing methods. In Proceedings of GPCE, 2010.

[48] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The essence of JavaScript. In

Proceedings of ECOOP, pages 1–25, 2010.

[49] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. Typing local control and state

using flow analysis. Programming Languages and Systems, pages 256–275, 2011.

[50] Jungwoo Ha, Mohammad R. Haghighat, Shengnan Cong, and Kathryn S. McKinley. A

concurrent trace-based just-in-time compiler for JavaScript. In Proceedings of OOPSLA,

2009.

[51] Brian Hackett and Shu-yu Guo. Fast and precise hybrid type inference for JavaScript.

Proceedings of PLDI, pages 239–250, 2012.

[52] Robert Harper, Bruce F. Duba, and David Macqueen. Typing first-class continuations in

ML. Journal of Functional Programming, 3(04):465–480, November 1993.

[53] Phillip Heidegger and Peter Thiemann. Recency Types for Dynamically-Typed, Object-

Based Languages. In Proceedings of FOOL, 2009.

[54] Fritz Henglein. Dynamic typing: syntax and proof theory. Science of Computer Pro-

gramming, 22(3):197–230, June 1994.

[55] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A minimal

core calculus for Java and GJ. In Proceedings of OOPSLA, pages 132–146, 1999.

[56] David Joiner. Python Enhancement Proposal (PEP) 3115 – Metaclasses in Python 3000.

Available online: http://www.python.org/dev/peps/pep-3115/, 2007.

[57] Juneau Juneau, Jim Baker, Leo Soto, Victor Ng, and Frank Wierzbicki. The definitive

guide to Jython: Python for the Java platform. Springer-Verlag, 2010.

[58] Sam Kamin, Lars Clausen, and Ava Jarvis. Jumbo: run-time code generation for Java and

its applications. In Code generation and optimization: feedback-directed and runtime

optimization, pages 48–56, 2003.

[59] Andrew John Kennedy. Programming languages and dimensions. PhD thesis, University

of Cambridge, 1996.

REFERENCES 131

[60] Andrew John Kennedy. Relational parametricity and units of measure. In Proceedings of

POPL, 1997.

[61] Joshua Kerievsky. Refactoring to patterns. Addison-Wesley, 2005.

[62] Dénes Knig. Theorie der Endlichen und Unendlichen Graphen: Kombinatorische Topolo-

gie der Streckenkomplexe. Leipzig: Akad. Verlag., 1936.

[63] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. In Proceedings of International Symposium on Code Genera-

tion and Optimization, number c, pages 75–86, 2004.

[64] Barbara Liskov and Stephen Zilles. Programming with abstract data types. ACM Sigplan

Notices, pages 50–59, 1974.

[65] Mika V. Mantyla and Casper Lassenius. What types of defects are really discovered in

code reviews? IEEE Transations on Software Engineering, 35(3):430–448, 2009.

[66] Simon Marlow and Philip Wadler. A practical subtyping system for Erlang. In Proceed-

ings of ICFP, pages 136–149, August 1997.

[67] Stefan Marr and Theo D’Hondt. Identifying a unifying mechanism for the implementa-

tion of concurrency abstractions on multi-language virtual machines. Objects, Models,

Components, Patterns, 2012.

[68] Yukihiro Matsumoto. Ruby. Available online at: www.ruby-lang.org, 1995.

[69] John McCarthy. Recursive functions symbolic expressions and their computation by ma-

chine, Part I. Communications of the ACM, 3(4):184–195, April 1960.

[70] Erik Meijer and Peter Drayton. Static typing where possible, dynamic typing when

needed: The end of the cold war between programming languages. In Proceedings of

Workshop on Revival of Dynamic Languages, 2004.

[71] Bertrand Meyer. Eiffel: The Language. Prentice Hall, Hemel Hempstead, 1992.

[72] Microsoft. TypeScript, 2012.

[73] Matt Might, Yannis Smaragdakis, and David Van Horn. Resolving and Exploiting the

k-CFA Paradox. In Proceedings of PLDI, pages 305–315, 2010.

[74] Tommi Mikkonen and Antero Taivalsaari. Using JavaScript as a Real Programming Lan-

guage. 2007.

[75] David C. Morrill. Traits: A new way of adding properties to Python classes. In Proceed-

ings of PyCon. Available online at: http://code.enthought.com/projects/traits/, 2003.

[76] MSDN. Using Type dynamic (C# Programming Guide), 2011.

132 REFERENCES

[77] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program anal-

ysis. Springer-Verlag, 1999.

[78] Sven-Olof Nyström. A soft-typing system for Erlang. In Proceedings of Erlang Work-

shop, pages 56–71, 2003.

[79] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A Comprehensive

Step-by-step Guide. Artima Inc, 1st edition, November 2008.

[80] Benjamin C. Pierce. Nominal and Structural Type Systems. In Types and programming

languages, chapter 19, pages 247–264. The MIT Press, first edition, 2002.

[81] Benjamin C. Pierce. Types and programming languages. The MIT Press, first edition,

2002.

[82] François Pottier. A modern eye on ML type inference. Lecture notes for the APPSEM

Summer School, 2005.

[83] Lutz Prechelt. An empirical comparison of seven programming languages. Computer,

27(6):1047–57, June 2000.

[84] Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. The Ins and Outs of gradual type

inference. In Proceedings of POPL, pages 481–494, New York, New York, USA, 2012.

ACM Press.

[85] Didier Remy. Typechecking records and variants in a natural extension of ML. In Pro-

ceedings of POPL, pages 77–88, 1989.

[86] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. The eval that men do.

In Proceedings of ECOOP, pages 52–78, 2011.

[87] Armin Rigo and Samuele Pedroni. PyPy’s approach to virtual machine construction. In

Proceedings of OOPSLA, pages 944–953. ACM, 2006.

[88] John Rose. JSR 292: Supporting Dynamically Typed Languages on the Java Platform.

[89] Bertrand Russell. The principles of mathematics. WW Norton & Company, 1996.

[90] Michael Salib. Starkiller: A Static Type Inferencer and Compiler for Python. Masters

Thesis, Department of Electrical Engineering and Computer Science, MIT., 2004.

[91] Manuel Serrano and Pierre Weis. Bigloo: a portable and optimizing compiler for strict

functional languages. Static Analysis, 1995.

[92] Tim Sheard and James Hook. Type safe meta-programming. Technical report, Oregon

Graduate Institute, 1994.

[93] Olin Shivers. Control-flow analysis in Scheme. In Proceedings of PLDI, pages 164–174,

1988.

REFERENCES 133

[94] Olin Shivers. Control-flow analysis of higher-order languages. PhD thesis, Carnegie

Mellon University, 1991.

[95] Olin Shivers. Higher-order control-flow analysis in retrospect: lessons learned, lessons

abandoned. ACM SIGPLAN Notices, 39(4):257–269, 2004.

[96] Jeremy Siek and Walid Taha. Gradual typing for functional languages. In Proceedings of

Scheme and Functional Programming Workshop, 2006.

[97] Jeremy Siek and Walid Taha. Gradual typing for objects. In Proceedings of ECOOP,

2007.

[98] Jeremy Siek and Manish Vachharajani. Gradual typing with unification-based inference.

In Proceedings of DLS, 2008.

[99] Jeremy Siek and Philip Wadler. Threesomes, with and without blame. In Proceedings of

STOP, pages 34–46, New York, New York, USA, 2009. ACM Press.

[100] Kevin D. Smith, Jim J. Jewett, Skip Montanaro, and Anthony Baxter. Python Enhance-

ment Proposal (PEP) 318 – Decorators for Functions and Methods. Available online:

http://www.python.org/dev/peps/pep-0318/, 2003.

[101] Vincent St-Amour, Sam Tobin-Hochstadt, and Matthias Felleisen. Optimization coach-

ing: optimizers learn to communicate with programmers. In Proceedings of OOPSLA,

pages 163–178, 2012.

[102] Rok Strniša, Peter Sewell, and Matthew Parkinson. The Java module system: core design

and semantic definition. In Proceedings of OOPSLA, volume 277, pages 499–513, 2007.

[103] Gerald Jay Sussman and Guy L Steele Jr. Scheme: An interpreter for extended lambda

calculus. MEMO 349, MIT AI LAB, 1975.

[104] Walid Taha. MetaML and multi-stage programming with explicit annotations. Theoreti-

cal Computer Science, 248(1-2):211–242, October 2000.

[105] Satish R. Thatte. Quasi-static typing. In Proceedings of POPL, pages 367–381, 1989.

[106] Peter Thiemann. Towards a type system for analyzing javascript programs. In Program-

ming Languages and Systems, pages 408–422, 2005.

[107] Christian Tismer. Continuations and Stackless Python. In Proceedings of PyCon, 2000.

[108] Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: from scripts to

programs. In Proceedings of DLS, pages 964–974, 2006.

[109] Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed

scheme. In Proceedings of POPL, pages 395–406, 2008.

[110] Laurence Tratt. Dynamically typed languages. Advances in Computers, March 2009.

134 REFERENCES

[111] Michael M Vitousek, Shashank Bharadwaj, and Jeremy G Siek. Towards Gradual Typing

in Python, 2012.

[112] Philip Wadler and R Findler. Well-typed programs can’t be blamed. Programming Lan-

guages and Systems, pages 0–31, 2009.

[113] Kevin Williams, Jason McCandless, and David Gregg. Dynamic interpretation for dy-

namic scripting languages. Trinity College Dublin, Department of Computer Science,

Technical Report, 2009.

[114] Collin Winter. Python Enhancement Proposal (PEP) 3129 – Class Decorators. Available

online: http://www.python.org/dev/peps/pep-3129/, 2007.

[115] Collin Winter and Tony Lownds. Python Enhancement Proposal (PEP) 3107. Available

online: http://www.python.org/dev/peps/pep-3107/, 2006.

[116] Andrew K. Wright and Robert Cartwright. A practical soft type system for scheme. In

ACM Transactions on Programming Languages and Systems, volume 19, pages 87–152,

January 1997.

[117] Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Östlund, and Jan

Vitek. Integrating typed and untyped code in a scripting language. In Proceedings of

POPL, pages 377–388, 2010.

[118] Junfeng Zhang. IronPython: A fast Python implementation for .NET and Mono. In

Proceedings of PyCon, 2004.

[119] David Zook, Shan Shan Huang, and Yannis Smaragdakis. Generating AspectJ Programs

with Meta-AspectJ. In Proceedings of GPCE. Springer-Verlag, October 2004.

Implementation listing

In this appendix we include the implementation of the type checking mechanism. It includes

everything except the bytecode parsing and repackaging module, a library of typed functions,

and some utilities. We have not included a similarly sized module with unit and integration tests.

from itertools import chain

from collections import defaultdict

from util import *
from mytypes import *
import random

PREVIOUS_STACK=’previous_stack’

MAX_STACK=8

9
class TypeErrorAssertion(AssertionError): pass

def typetostr(t):

’Returns a "pretty" textual representation of a type.’

if isinstance(t,type):

return str(t).split("’")[1]

if isinstance(t,str):

return t

if isinstance(t,set):

19 return ’ or ’.join(typetostr(tt) for tt in t)

assert False,t

def pointtostr(point):

res=[]

for p,pc in point:

for i in range(pc,-1,-1):

op,operand=p.code[i]

if op==byteplay.SetLineno:

res.append(’File "%s", line %d, in %s’%(p.filename,operand,p.name))

29 break

return ’\n’.join(res)

def typejoin(*types):

’’’Returns a join of the types given as arguments.’’’

optimization, chose 2 on purpose

if len(types)==1: return types[0]

res=set()

for t in types:

if isinstance(t,set):

39 res|=t

else:

res.add(t)

135

136 Appendix Implementation listing

if Top in res: return Top

res-={Bot}

if len(res)==1: return res.pop()

if not res: return Bot

return res

def typemeet(u,v):

49 ’’’Returns a meet of the types given as arguments.’’’

if u == v: return u

if u==Top: return v

if v==Top: return u

res=(u if isinstance(u,set) else {u}) & (v if isinstance(v,set) else {v})

if not res: return Bot

if len(res)==1: return res.pop()

return res

def skipinvalid(point):

59 *rst, (p,pc)=point

while not isopcode(p.code[pc][0]):

pc+=1

assert pc<len(p.code)

rst.append((p,pc))

return tuple(rst)

class Name:

’’’Base class for variable names/stack position hierarchy’’’

69 isstack,islocal,isglobal=False,False,False

def shift(self,n):

return self

@AutoEQImmutable

class VName(Name):

’’’Base class for a variable name.’’’

def __init__(self,x):

self.x=x

def __key__(self):

79 yield self.x

def __repr__(self):

return self.x

class Global(VName): isglobal=True

class Local(VName): islocal=True

@AutoEQImmutable

class StackOffset(Name):

’’’Represents the offset on a stack.’’’

isstack,islocal,isglobal=True,False,False

89 def __init__(self,n):

self.n=n

def shift(self,n):

if n==0: return self

else: return StackOffset(self.n+n)

def __key__(self):

yield self.n

def __str__(self):

if self.n:

return ’StackOffset(%d)’%self.n

99 else: return ’’

__repr__=__str__

Appendix Implementation listing 137

tos=StackOffset(0)

tos1=StackOffset(1)

class BaseInst:

checks=0

changesprog=False

calls=False

109 def copyp(self):

pass

def copyf(self):

pass

def __init__(self,analyser,s):

self.analyser=analyser

self.s=s

class FirstInst(BaseInst):

’’’Represents the instruction at first execution point (),

119 which in reality does not exist.’’’

calls=True

def gtp(self,x):

if not x.isglobal:

return Un

x is a global

globs=self.analyser.globs

if x.x in globs:

val=globs[x.x]

elif x.x in self.analyser.builtins:

129 val=self.analyser.builtins[x.x]

else:

return Un

return self.analyser.gettype(val)

def gtf(self,x):

return Top

def _getnext(self):

return [self.analyser.initpoint]

139
def _getnextloc(self):

return [None]

class LastInst(BaseInst):

’’’Represents the instruction at first execution point None,

which in reality does not exist.’’’

def gtf(self,x):

return Top

def gtp(self,x):

return Un

149 def _getnext(self):

return []

_getnextloc=_getnext

class Inst(BaseInst):

’’’This class represents a generic instruction object.

All subclasses of Inst correspond to actual bytecode instructions.

This contains all the functionality for inferring the types at its curent

159 point.’’’

138 Appendix Implementation listing

def __init__(self,analyser,s):

super().__init__(analyser,s)

(p,pc)=self.s[-1]

self.operand=p.code[pc][1]

def shiftp(self,x):

’’’Depending on the stack shifting of the current instruction

shifts the stack offset for the forwards analysis’’’

return x.shift(-self.stackshift)

def shiftf(self,x):

169 ’’’Depending on the stack shifting of the current instruction

shifts the stack offset for the backwards analysis’’’

return x.shift(self.stackshift)

def getfunction(self,n):

’’’Returns the function loaded at stack position n’’’

assert n!=0

a=self.analyser

prev=list(a.getprevloc(self.s))

assert len(prev)==1,prev

prev=a.getinst(prev[0])

179 return prev.getfunction(n-self.stackshift)

def _getnext(self):

’’’Default implementation that returns the next execution point.

By default this is the next instruction in program order.’’’

*next, (p,pc)=self.s

next.append((p,pc+1))

return [skipinvalid(next)]

_getnextloc=_getnext

def gtp(self,x):

189 if x.isstack and (x.n<0 or x.n>=MAX_STACK):

return Un

return self.analyser.envp.get((self.s,x),Bot)

def gtf(self,x):

if x.isstack and (x.n<0 or x.n>=MAX_STACK):

return Top

return self.analyser.envf.get((self.s,x),Bot)

def copyf(self):

a=self.analyser

envf=a.envf

199 res=self._copyf()

for x in a.vars:

envf[self.s,x]=(res[x] if x in res

else self.gtfnext(self.shiftf(x)))

def _copyf(self):

return {}

def copyp(self):

a=self.analyser

envp=a.envp

res=self._copyp()

209 for x in a.vars:

spot=self.s,x

if x in res:

envp[spot]=res[x]

else:

x=self.shiftp(x)

if x.islocal or x.isstack:

envp[spot]=self.gtpprevloc(x)

else:

envp[spot]=self.gtpprevglob(x)

Appendix Implementation listing 139

219 def _copyp(self):

return {}

def gtpprevloc(self,x):

’’’Returns a union of the p types of x at the previous points

on the intra procedural control flow graph’’’

a=self.analyser

s=self.s

if a.isentry(s):

if x.islocal:

args=s[-1][0].args

229 name=x.x

if name in args:

index=len(args)-1-args.index(name)

prev=a.getprev(s)

return typejoin(*[a.getinst(s_).gtpprevloc(StackOffset(index))

for s_ in prev])

return Un

prev=a.getprevloc(s)

return typejoin(*[a.getinst(s_).gtp(x) for s_ in prev])

239 def gtpprevglob(self,x):

’’’Returns a union of the p types of x at the previous points

on the inter procedural control flow graph’’’

a=self.analyser

prev=a.getprev(self.s)

return typejoin(*[a.getinst(s_).gtp(x) for s_ in prev])

def gtfnext(self,x):

a=self.analyser

nxt=a.getnext(self.s)

249 return typejoin(*[a.getinst(s_).gtf(x) for s_ in nxt])

def __repr__(self):

return ’%s %s at %s’%(type(self),self.operand,self.s)

__str__=__repr__

class LOAD_CONST(Inst):

stackshift=1

def getfunction(self,n):

if n!=0:

return super().getfunction(n)

259 return self.operand

def _copyp(self):

return {tos:self.analyser.gettype(self.operand)}

class MAKE_FUNCTION(Inst):

stackshift=-1

def _copyp(self):

return {tos:Callable}

class DUP_TOP(Inst):

269 stackshift=1

def _copyf(self):

return {tos:typemeet(self.gtfnext(tos),self.gtfnext(tos1))}

class CALL_FUNCTION(Inst):

calls=True

@property

def checks(self):

return 1+(0 if self.changesprog else self.operand)

@property

140 Appendix Implementation listing

def stackshift(self):

279 return -self.operand

def getfunction(self,n):

assert n!=0

a=self.analyser

prev=list(a.getprevloc(self.s))

assert len(prev)==1,prev

prev=a.getinst(prev[0])

return prev.getfunction(n+self.operand)

@simplememo

289 def getcalledfn(self):

a=self.analyser

prev=a.getprevloc(self.s)

assert len(prev)==1,self.s

res=a.getinst(list(prev)[0]).getfunction(self.operand)

return res

@property

def changesprog(self):

return not getattr(self.getcalledfn(),’__annotations__’,False)

299
def _getnext(self):

if not self.changesprog:

return self._getnextloc()

get called function

f=self.getcalledfn()

p_=ExtraCode.from_code(f.__code__)

return [skipinvalid((self.s+((p_,0),))[-self.analyser.accuracy:])]

def _copyp(self):

309 a=self.analyser

fn=self.getcalledfn()

if getattr(fn,’__annotations__’,False):

return {tos:fn.__annotations__[’return’]}

else:

nxt=a.getnextloc(self.s)

assert len(nxt)==1

nxt=list(nxt)[0]

return {tos:a.getinst(nxt).gtpprevglob(tos)}

def _copyf(self):

319 fn=self.getcalledfn()

a=self.analyser

s=self.s

n_args=self.operand

res={}

if hasattr(fn,’__code__’):

args=ExtraCode.from_code(fn.__code__).args

assert len(args)==n_args,fn

for n in range(n_args):

name=args[n_args-n-1]

329 if getattr(fn,’__annotations__’,False):

assert name in fn.__annotations__,’all or none’

res[StackOffset(n)]=fn.__annotations__[name]

else:

res[StackOffset(n)]=self.gtfnext(Local(name))

res[StackOffset(n_args)]=Callable

for x in a.vars:

if x.islocal or (x.isstack and x.n>n_args):

Appendix Implementation listing 141

res[x]=typejoin(*[a.getinst(nxt).gtf(self.shiftf(x))

for nxt in a.getnextloc(self.s)])

339 return res

class POP_JUMP_IF_FALSE(Inst):

checks=1

stackshift=-1

def _getnext(self):

return super()._getnext()+JUMP_ABSOLUTE._getnext(self)

_getnextloc=_getnext

349 class STORE_GLOBAL(Inst):

stackshift=-1

def _copyp(self):

return {Global(self.operand):self.gtpprevglob(tos)}

def _copyf(self):

x=Global(self.operand)

return {x:Top, tos:self.gtfnext(x)}

class STORE_FAST(Inst):

stackshift=-1

def _copyp(self):

359 return {Local(self.operand):self.gtpprevglob(tos)}

def _copyf(self):

x=Local(self.operand)

return {x:Top,tos:self.gtfnext(x)}

class LOAD_GLOBAL(Inst):

stackshift=1

def _copyf(self):

x=Global(self.operand)

return {x:typemeet(self.gtfnext(tos),self.gtfnext(x))}

def _copyp(self):

369 return {tos:self.gtpprevglob(Global(self.operand))}

def getfunction(self,n):

if n!=0:

return super().getfunction(n)

a=self.analyser

f=self.operand

if f in a.globs:

return a.globs[f]

if f in a.builtins:

return a.builtins[f]

379 raise Exception(’%s not found’%f)

class LOAD_FAST(Inst):

stackshift=1

def _copyf(self):

x=Local(self.operand)

return {x:typemeet(self.gtfnext(tos),self.gtfnext(x))}

def _copyp(self):

return {tos:self.gtpprevloc(Local(self.operand))}

class POP_TOP(Inst): stackshift=-1

389 class NOP(Inst): stackshift=0

class POP_BLOCK(NOP): pass

class SETUP_LOOP(NOP): pass

class BREAK_LOOP(NOP):

def _getnext(self):

*rst, (p,pc)=self.s

for _pc in range(pc-1,0,-1):

142 Appendix Implementation listing

if p.code[_pc][0]==byteplay.SETUP_LOOP:

label=p.code[_pc][1]

for _pc in range(pc+1,len(p.code)):

399 if p.code[_pc][0]==label:

return [skipinvalid(rst+[(p,_pc)])]

assert False

assert False

_getnextloc=_getnext

class JUMP_ABSOLUTE(NOP):

def _getnext(self):

*rst, (p,pc)=self.s

for i,label in enumerate(p.code):

409 if label==(p.code[pc][1],None):

rst.append((p,i))

return [skipinvalid(rst)]

assert False

_getnextloc=_getnext

class JUMP_FORWARD(JUMP_ABSOLUTE): pass

class POP_JUMP_IF_TRUE(POP_JUMP_IF_FALSE): pass

class RETURN_VALUE(Inst):

stackshift=0

changesprog=True

419 def _getnext(self):

a=self.analyser

*start, (p,pc)=self.s

start.append((p,0))

return chain(*(a.getinst(fro)._getnextloc() for fro in a.getprev(skipinvalid(

start))))

def _getnextloc(self):

return []

def _copyf(self):

return dict((x,Top) for x in self.analyser.vars

if x.islocal or (x.isstack and x.n>0))

429 class INPLACE_ADD(Inst):

checks=2

stackshift=-1

def _copyp(self):

return {tos:Number}

def _copyf(self):

return {tos:Number,tos1:Number}

class BINARY_MODULO(Inst):

439 checks=2

stackshift=-1

def _copyp(self):

return {tos:self.gtpprevloc(tos1)}

def _copyf(self):

return {tos:{bytes,Number,str,tuple},tos1:{Number,str}}

BINARY_OR=BINARY_LSHIFT=BINARY_RSHIFT=BINARY_AND=INPLACE_RSHIFT=BINARY_FLOOR_DIVIDE=

INPLACE_SUBTRACT=BINARY_TRUE_DIVIDE=BINARY_MULTIPLY=INPLACE_MULTIPLY=BINARY_POWER=

BINARY_SUBTRACT=BINARY_LSHIFT=BINARY_ADD=INPLACE_ADD

449 class UNARY_NEGATIVE(Inst):

stackshift=0

checks=1

Appendix Implementation listing 143

def _copyp(self):

return {tos:Number}

def _copyf(self):

return {tos:Number}

class BUILD_TUPLE(Inst):

@property

459 def stackshift(self):

return -self.operand+1

def _copyp(self):

return {tos:tuple}

def _copyf(self):

return dict((StackOffset(n),Top) for n in range(self.operand))

class UNPACK_SEQUENCE(Inst):

checks=1

@property

469 def stackshift(self):

return self.operand-1

def _copyp(self):

return dict((StackOffset(n),Top) for n in range(self.operand))

def _copyf(self):

return {tos:tuple}

class COMPARE_OP(INPLACE_ADD):

def _copyp(self):

479 return {tos:bool}

class BINARY_SUBSCR(Inst):

stackshift=-1

checks=1

def _copyp(self):

return {tos:Top}

def _copyf(self):

return {tos:Number,tos1:{MutableSequence,str}}

class STORE_SUBSCR(Inst):

489 stackshift=-3

def _copyf(self):

return {tos:Number,tos1:MutableSequence,StackOffset(2):Top}

class Analyser:

’’’This class is the entry point for the analysis.’’’

def __init__(self,main, accuracy=2):

self.accuracy=accuracy

self.main=main

499 self.globs=main.__globals__

self.builtins=__builtins__

self.initpoint=((ExtraCode.from_code(self.main.__code__),1),)

self.localedges=set()

self.nextlocaldict=defaultdict(set)

self.prevlocaldict=defaultdict(set)

self.edges=set()

self.nextdict=defaultdict(set)

self.prevdict=defaultdict(set)

self.getnext=self.nextdict.__getitem__

509 self.getprev=self.prevdict.__getitem__

self.getnextloc=self.nextlocaldict.__getitem__

144 Appendix Implementation listing

self.getprevloc=self.prevlocaldict.__getitem__

self.points={(),self.initpoint,None}

self.trail=set()

self.envp={}

self.envf={}

self.failedges={}

self.instdict={():FirstInst(self,()),None:LastInst(self,None)}

self.assertions=defaultdict(list)

519 self.vars=set()

self.calcedges()

for p in self.points:

inst=self.getinst(p)

if isinstance(inst,(STORE_GLOBAL,LOAD_GLOBAL)):

self.vars.add(Global(inst.operand))

if isinstance(inst,(STORE_FAST,LOAD_FAST)):

self.vars.add(Local(inst.operand))

for n in range(MAX_STACK):

self.vars.add(StackOffset(n))

529 self.calcassertions()

def printwarnings(self):

i=1

for warn in self.failedges.values():

print(’Failure’,i,’- partial Traceback:’)

print(warn)

print()

i+=1

i=1

539 for (fro,to),ass in self.assertions.items():

print(’Assertion ’,i)

print(pointtostr(to))

for x,tp,t in ass:

print(’Variable %s inferred %s but expected %s’%(x,typetostr(tp),

typetostr(t)))

i+=1

def isentry(self,s):

return s[-1][1]==1 and self.getinst(list(self.getprev(s))[0]).calls

def gettype(self,val):

for typ in (Callable,Number,MutableSequence,type(val)):

549 if isinstance(val,typ): return typ

def getinst(self,point):

si=self.instdict

if point not in si:

p,pc=point[-1]

si[point]=globals()[str(p.code[pc][0])](self,point)

return si[point]

def calcedges(self):

559 ’’’This method constructs the global inter-procedural CFG

and local intra-procedural CFGs’’’

oldlen=-1

spa=self.points.add

points=self.points

sea=self.edges.add

se=self.edges

sn=self.nextdict

sp=self.prevdict

slea=self.localedges.add

Appendix Implementation listing 145

569 sle=self.localedges

sln=self.nextlocaldict

slp=self.prevlocaldict

while oldlen!=len(se):

oldlen=len(se)

for point in set(points):

for nextpoint in self.getinst(point)._getnext():

edge=(point,nextpoint)

if edge in se:

continue

579 spa(nextpoint)

sea(edge)

sn[point].add(nextpoint)

sp[nextpoint].add(point)

if sln[point]:

continue

for nextpoint in self.getinst(point)._getnextloc():

edge=(point,nextpoint)

if edge in sle:

continue

589 slea(edge)

sln[point].add(nextpoint)

slp[nextpoint].add(point)

optimisation, instructions have all been constructed

replace factory with call to dictionary

self.getinst=self.instdict.get

def emit(self,globs):

newfns=set()

599 b=byteplay # alias

insertions=defaultdict(list)

def insertss(s):

inserts before

insertions[s]+=[

(b.LOAD_CONST,s),

(b.STORE_GLOBAL,PREVIOUS_STACK)

]

def insertfail(s,sprev):

failmsg=self.failedges[sprev,s]

609 def failfast(globs):

if globs[PREVIOUS_STACK]!=sprev:

return

raise TypeErrorAssertion(failmsg)

insertions[s]+=[

(b.LOAD_CONST,failfast),

(b.LOAD_GLOBAL,’globals’),

(b.CALL_FUNCTION,0),

(b.CALL_FUNCTION,1),

(b.POP_TOP,None)

619]

def insertassert(s,assertion,sprev):

def asserttype(globs,locs):

x,_,t=assertion

if globs[PREVIOUS_STACK]!=sprev:

return

dic=locs if x.islocal else globs

if x.x not in dic:

tr=Un

146 Appendix Implementation listing

else:

629 tr=self.gettype(dic[x.x])

if typemeet(tr,t)!=Bot:

return

raise TypeErrorAssertion(’Future type error due to %s at %s, expected

%s got %s’%(x,s,typetostr(t),typetostr(tr)))

insertions[s]+=[

(b.LOAD_CONST,asserttype),

(b.LOAD_GLOBAL,’globals’),

(b.CALL_FUNCTION,0),

(b.LOAD_GLOBAL,’locals’),

(b.CALL_FUNCTION,0),

639 (b.CALL_FUNCTION,2),

(b.POP_TOP,None)

]

def getfname(s):

*rst,(p,pc)=s

fname=’_’.join(p.name+str(pc) for p,pc in rst)

fname+=’_’+p.name

return fname

for point in self.points:

649 if point:

*rst,(p,pc)=point

rst.append(p)

newfns.add(tuple(rst))

insert marker at entry point

insertions[self.initpoint]+=[

(b.LOAD_CONST,()),

(b.STORE_GLOBAL,PREVIOUS_STACK)

]

for edge in self.edges:

659 fro,to=edge

if edge in self.failedges:

for s in self.getprev(to):

insertss(s)

insertfail(to,fro)

if edge in self.assertions:

for s in self.getprev(to):

insertss(s)

for assertion in self.assertions[edge]:

insertassert(to,assertion,fro)

669 self.delfns={PREVIOUS_STACK}

self.checks=0

for fn in newfns:

*rst,p=fn

newbc=ExtraCode.from_byteplay_code(p)

create new bytecode

newbc.code=[]

for pc in range(len(p.code)):

s=tuple(rst+[(p,pc)])

if isopcode(p.code[pc][0]):

679 if self.getinst(s):

self.checks+=self.getinst(s).checks

newbc.code+=insertions[s]

change called function reference

op,operand=p.code[pc]

if op==b.CALL_FUNCTION:

_s=list(self.getnext(s))[0]

Appendix Implementation listing 147

if self.isentry(_s):

change called function

newbc.code[-operand-1]=(b.LOAD_GLOBAL,getfname(_s))

689 newbc.code.append(p.code[pc])

self.delfns.add(getfname(s))

globs[getfname(s)]=FunctionType(newbc.to_code(),globs)

def clearfns(self,globs):

for fn in self.delfns:

if fn in globs:

del globs[fn]

def calcassertions(self):

compute all environments

699 def traverse(point,allpoints,prefn,nxtfn,gt):

if point not in allpoints:

return

gt(point)

allpoints.remove(point)

for point in nxtfn(point):

traverse(point,allpoints,prefn,nxtfn,gt)

oldenvp=None

iterations=0

while oldenvp!=self.envp:

709 iterations+=1

oldenvp=dict(self.envp)

traverse forwards direction

allpoints=set(self.points)

traverse((),allpoints,self.getprev,self.getnext,

lambda p : self.getinst(p).copyp())

assert not allpoints

print(’fixpoint p in %d iterations’%iterations)

del oldenvp

oldenvf=None

719 while oldenvf!=self.envf:

oldenvf=dict(self.envf)

traverse backwards direction

traverse(None,set(self.points),self.getnext,self.getprev,

lambda p : self.getinst(p).copyf())

del oldenvf

gi=self.getinst

calculate failedge

for edge in self.edges:

fro,to = edge

729 froinst=gi(fro)

for x in self.vars:

if x.islocal and froinst.changesprog: continue

if x.isstack and x.n>0: continue

_tf=gi(to).gtf(x)

if _tf==Top: continue

tp=froinst.gtp(x);tf=froinst.gtf(x)

if tf!=_tf and typemeet(tp,_tf)==Bot:

self.failedges[edge]=’%s\nVariable %s expected %s but found %s’%(

pointtostr(to),x,typetostr(_tf),typetostr(tp))

739 # add to failedge

oldsize=0

while oldsize!=len(self.failedges):

oldsize=len(self.failedges)

for edge in self.edges:

if edge in self.failedges:

148 Appendix Implementation listing

continue

if all next edges are failedges then this one is

fro,to=edge

if to is not None and all((to,nxt) in self.failedges

749 for nxt in self.getnext(to)):

self.failedges[edge]=’\n’.join({

self.failedges[(to,nxt)]

for nxt in self.getnext(to)})

calculate assertions to insert

fail edges is at its maximum here

for edge in self.edges:

if edge in self.failedges:

continue

fro,to=edge

759 if len(self.getnext(fro))==1:

continue

froinst=gi(fro)

toinst=gi(to)

for x in self.vars:

if x.islocal and froinst.changesprog: continue

if x.isstack: continue

_tf=toinst.gtf(x)

tp=froinst.gtp(x);tf=froinst.gtf(x)

meet=typemeet(tp,_tf)

769 if tf!=_tf and meet!=tp and meet!=Bot:

self.assertions[edge].append((x,tp,meet))

remove redundant failedge

oldsize=9999999999

oldfailedges=dict(self.failedges)

while oldsize!=len(self.failedges):

oldsize=len(self.failedges)

for edge in dict(self.failedges):

if all previous edges are failedges then this one

need not be

779 fro,to=edge

if fro!=() and all(

(prev,fro) in oldfailedges

for prev in self.getprev(fro)):

self.failedges.pop(edge)

