
102

P/Taint: Unified Points-to and Taint Analysis

NEVILLE GRECH, University of Athens, Greece and University of Malta, Malta

YANNIS SMARAGDAKIS, University of Athens, Greece

Static information-flow analysis (especially taint-analysis) is a key technique in software security, computing

where sensitive or untrusted data can propagate in a program. Points-to analysis is a fundamental static

program analysis, computing what abstract objects a program expression may point to. In this work, we

propose a deep unification of information-flow and points-to analysis. We observe that information-flow

analysis is not a mere high-level client of points-to information, but it is indeed identical to points-to analysis

on artificial abstract objects that represent different information sources. The very same algorithm can compute,

simultaneously, two interlinked but separate results (points-to and information-flow values) with changes

only to its initial conditions.

The benefits of such a unification are manifold. We can use existing points-to analysis implementations,

with virtually no modification (only minor additions of extra logic for sanitization) to compute information

flow concepts, such as value tainting. The algorithmic enhancements of points-to analysis (e.g., different

flavors of context sensitivity) can be applied transparently to information-flow analysis. Heavy engineering

work on points-to analysis (e.g., handling of the reflection API for Java) applies to information-flow analysis

without extra effort. We demonstrate the benefits in a realistic implementation that leverages the Doop

points-to analysis framework (including its context-sensitivity and reflection analysis features) to provide

an information-flow analysis with excellent precision (over 91%) and recall (over 99%) for standard Java

information-flow benchmarks.

The analysis comfortably scales to large, real-world Android applications, analyzing the FacebookMessenger

app with more than 55K classes in under 7 hours.

CCS Concepts: • Software and its engineering→ General programming languages;

Additional Key Words and Phrases: Taint Analysis, Pointer Analysis, Android

ACM Reference Format:

Neville Grech and Yannis Smaragdakis. 2017. P/Taint: Unified Points-to and Taint Analysis. Proc. ACM Program.
Lang. 1, OOPSLA, Article 102 (October 2017), 28 pages. https://doi.org/10.1145/3133926

1 INTRODUCTION

Large software systems are ubiquitous and their security is a major concern. Malicious or ill-
designed programs can have their operation affected by untrusted inputs or can leak sensitive
information, such as private messages, location information, financial details, etc. Static information-
flow analysis (or łtaint analysisž)1 [Arzt et al. 2014; Huang et al. 2015; Lerch et al. 2014; Tripp et al.

1The term łinformation-flow analysisž can also be used to describe other analyses, such as dependence analysis [Johnson

et al. 2015]. Taint analysis is the most common information-flow analysis, however, and the one most implemented in

practice. In the context of this paper, we treat the two terms as synonyms.

Authors’ email: me@nevillegrech.com and yannis@smaragd.org.
Authors’ addresses: Neville Grech, Dept. of Informatics, University of Athens, Ilisia, Athens, 15784, Greece , University of

Malta, Malta, me@nevillegrech.com; Yannis Smaragdakis, Dept. of Informatics, University of Athens, Ilisia, Athens, 15784,

Greece, yannis@smaragd.org.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2017 Copyright held by the owner/author(s).

2475-1421/2017/10-ART102

https://doi.org/10.1145/3133926

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3133926
https://doi.org/10.1145/3133926


102:2 Neville Grech and Yannis Smaragdakis

2009] addresses this problem and exposes potential violations to security analysts or automated
tools by discovering where sensitive information can flow throughout the program.

Points-to analysis (or łpointer analysisž) [Hind 2001; Ryder 2003; Sridharan et al. 2013] is a core
static analysis that answers the question łwhat objects can a program expression refer tož? The
analysis can be used as a low-level substrate for a variety of clients: bug detectors [Nikolić and
Spoto 2012], code completion engines [Raychev et al. 2014], refactoring transformations [Schäfer
et al. 2011], program slicers [Wu et al. 2012], de-obfuscators [Raychev et al. 2015], optimizers
[Lattner et al. 2007], and more.
Both information-flow and points-to analysis are whole-program static analysis techniques. De-

veloping static analyses of this kind is a highly demanding task of careful and precise modeling
of language semantics and complex features. Even the seemingly simple effort of computing a
program’s call-graph (i.e., which program function can call which other) requires sophisticated
analysis in order to achieve precision.

The tenet of our work is that points-to and information-flow can be unified into a single analysis.
This is simultaneously an intuitive and an unexpected result. Both analyses compute łwhere can
values flow in a program?ž and are thus similar at a high-level. At the same time, the analyses
have significant differences: points-to computes where abstract (heap) objects can be referenced;
information-flow analysis computes which taint sources can influence a value and whether a value
can reach a sink. Notably, taint can be transferred to values of different types (e.g., a tainted byte
array can be used to compute a tainted string). Certainly, traditional information-flow analysis
implementations are stand-alone and, if the analysis consumes points-to information, it does so as
a mere client.

Our techniques are different in this regard. We unify both information and pointer analysis and
amalgamate their algorithmic detail. The result is that the same algorithm can then compute both
points-to and information flowÐat the same time. The key technique is that of changing the domain
of points-to information targets. Whereas in a standard points-to analysis a variable can point to an
abstract object (a.k.a. a heap allocation), under our analysis a variable points to more general values.
Unlike heap allocations, the possible values are not pre-determined in the program textÐnew ones
can be introduced on-the-fly. This introduction of values happens for each taint source, as well as
for each operation that propagates a taint. The algorithmic logic remains the same as in traditional
points-to analysis: the only difference is that the logic now operates over both real and artificial
łobjectsž, with the latter representing taint information.

This approach can be applied to a wide range of points-to analyses, both in practice and in terms
of high-level reasoning. We demonstrate the latter by adding information-flow analysis on top of
a formal model for a wide range of points-to analyses. Accordingly, we employ the approach in
the development of P/Taint: a practical information-flow framework built as an extension of the
Doop points-to analysis framework [Bravenboer and Smaragdakis 2009b] for Java. P/Taint adds
significant functionality to Doop: for computing tainted values on-the-fly, for marking taint sources,
for propagating taint between values of unrelated types, and for value sanitization. However,
this functionality is not a client of the Doop points-to analysis: the taint analysis computation
is performed by the existing, virtually unmodified Doop algorithms, fed with augmented input.
P/Taint showcases several benefits of the approach:

• Although the Doop implementation consists of several thousands of logical rules, in some
tens-of-thousands of lines of code, the development of P/Taint has only required changes
to a handful of rules of existing Doop code. The rest of the P/Taint functionality is a clean
add-on, applicable orthogonally to the many analyses of the framework, without replicating
any of the points-to analysis machinery for dealing with different language features.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



P/Taint: Unified Points-to and Taint Analysis 102:3

• P/Taint inherits all of the rich analyses of Doop and can use them to gain precision in
information-flow analysis, i.e., to reduce false positives. Specifically, P/Taint can transparently
use any of several tens of analyses, with different kinds of context sensitivity (e.g., call-site
sensitivity [Sharir and Pnueli 1981; Shivers 1991], object-sensitivity [Milanova et al. 2002,
2005], type-sensitivity [Smaragdakis et al. 2011]). The use of context is valuable for precise
taint propagation, in exactly the same way as it is for points-to analysis.
• P/Taint inherits all of the analysis support of Doop for complex Java language features (e.g.,
native methods, class loading, initialization, implicit reachability, and more). Notably, P/Taint
transparently inherits Doop’s sophisticated reflection analysis [Smaragdakis et al. 2015]:
taint values can propagate through reflection operations, just as objects can. This enables
information-flow analysis with high recall: we can detect many more information-flow
violations in actual benchmarks, thus reducing false negatives.

We demonstrate the effectiveness of our approach on a number of benchmarks, including
SecuriBench Micro [Livshits 2006], JInfoFlow-bench (a new benchmark suite we developed2), and
DroidBench 2.0 [Arzt et al. 2014]. By leveraging the P/Taint’s features, we achieve an over-99% recall
rate over all Java information-flow benchmarks, with a very low incidence of false positives (over
91% precision). In order to further demonstrate the practical application of our approach, we P/Taint
also supports many Android-specific features within its analyses. We have achieved a recall of
over-96%, with over-86% precision for all relevant suites of DroidBench 2.0. The framework achieves
such high-quality analysis results while maintaining very high efficiencyÐe.g., just over 7 minutes
analysis time for all of SecuriBench. This efficiency is also complemented by high scalabilityÐwe
apply P/Taint to real-world Android applications and show that we can Analyze, e.g., Facebook
Messenger, an application with more than 55K classes, including the full Android library classes, in
under seven hours.

2 BACKGROUND AND ILLUSTRATION

We next illustrate with simple examples the high-level ideas of our approach, while providing some
background on points-to and information-flow analyses.

Points-To Analysis Basics. Points-to analysis computes the set of abstract objects that a pro-
gram expression can refer to. Abstract objects are typically identified with allocation sites, i.e.,
instructions (instances of new) performing an object allocation: all run-time objects allocated by the
same instruction are mapped into the same abstract object. (This is a standard simplification that
ignores context-sensitive heap abstractions, a.k.a. heap cloning. We discuss this aspect separately in
Section 4.3.)
The source of a points-to computation is, therefore, an allocation instruction:

A a1 = new A(); // heap allocation/abstract obj.

Points-to analysis will trivially infer that local variable a1 can point to the abstract object identified
with the above new statement. The essence of points-to analysis, however, is to compute how these
abstract objects flow through different language constructs. The most interesting cases of standard
constructs that propagate points-to information are method calls and heap loads/stores. For instance,
our example can be extended with method calls and returns, as well as local assignments (possibly
via casts) and heap loads and stores:

2Available online at https://github.com/plast-lab/JInfoFlow-bench .

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.

https://github.com/plast-lab/JInfoFlow-bench


102:4 Neville Grech and Yannis Smaragdakis

Object p = foo();

bar(p);

B b1 = p.fld;

...

A foo() {

A a1 = new A(); // abstract object A1

return a1;

}

void bar(Object q) {

A a2 = (A) q;

a2.fld = new B(); // abstract object B1

}

Local variables a1, p, q, and a2 can all point to (at least) abstract object A1. Similarly, local variable
b1 can point to abstract object B1. Abstract object A1 (and, accordingly, any concrete object it
represents) flows through the above program fragment via calls and returns. Abstract object B1
flows through heap loads and stores.

The essence of a points-to analysis algorithm is in making these inferences as precisely as possible
without missing any object flow. The end result of the analysis has a standard form of a map from
a variable to a set of abstract objects (i.e., allocation sites).

Information-Flow Analysis Basics. Information-flow analysis computes which sources of data
produce values that can reach specific data sinks. This general analysis statement captures several
practical security and privacy questions: computing which tainted (i.e., untrusted) sources can
provide values that are used in trusted computations; computing which privileged objects can flow
to unprivileged code; computing which sensitive information can leak to unauthorized agents; etc.
The starting point of an information-flow computation is typically a data source API call. For

instance, consider code that reads a string from an untrusted (taint) source, such as user input:

String a = source.readLine (); // taint source

The essence of information-flow is to track tainted values as they propagate through the program.
The concept of taint is more abstract than objects, however. Taint is associated with the contents
of the data and not with where they can be found in memory (or how they are allocated). For
instance, two string objects that are allocated by the same instruction may have different taint
values, depending on their contents.

Accordingly, the same taint can be passed across different object types. This is done via data
transform functions. For instance, consider:

String a = source.readLine (); // taint source

byte[] aAsBytes = a.getBytes ();

The aAsBytes variable holds a tainted value, with the same taint source as that of the a variable,
even though the two are different objects, of incompatible types. The tainted string value was used
to create a tainted byte array. However the contents have merely been transformed without losing
the taint of the information.
Finally, taint can be removed via sanitization functions. These remove the taint from a value,

in cases when the taint would otherwise propagate (e.g., when a new string contains parts of a
tainted one). An example use of a sanitization function appears in the example below:

String a = source.readLine (); // taint source

String aSafe = java.net.URLEncoder.encode(a, "UTF -8");

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



P/Taint: Unified Points-to and Taint Analysis 102:5

Importantly, sanitization may apply even when the data storage (i.e., the object holding the
information) remains the same: the exact same object will no longer have a tainted value.

Similarities and Differences. We observe from the above discussion that points-to analysis and
information-flow analysis have similarities at a high level: both compute the flow of objects through
a program. However, the two analyses also have significant differences:

• For points-to analysis, the values flowing to variables are abstract objects, i.e., allocation sites.
For information-flow analysis, values identify taint sources, i.e., method calls.
• Taint and object identity are orthogonal concepts. The same taint can apply to different
objects, and even objects of different type. The same abstract object (as far as points-to
analysis is concerned) can represent both tainted and untainted concrete objects. The same
object may be tainted or untainted at different points in its lifetime. Sanitization and data
transform functions have no counterpart in the points-to analysis world.

These differences seem to make the two analyses fundamentally incompatible. Therefore, typical
past implementations of a taint analysis (e.g., FlowDroid [Arzt et al. 2014]) have been clients of
points-to analyses, using them to obtain a model of the heap. The taint analysis then defines on its
own the flow of taint values in and out of heap objects, as well as through local variables.

Approach. Our approach consists of fully unifying points-to and information-flow analyses.
We take standard points-to analysis algorithms and show how they can be modified to compute
both points-to and information-flow results. The core of the resulting analysis remains the same:
the flow of objects through methods or through the heap is determined by the original points-to
analysis algorithm. However, a lot more values are now processed by this (virtually) unchanged
logic: the key technique we employ is to identify information flow sources, as well as data transform
functions, with artificial abstract objects, which the points-to analysis processes as if they were
allocation sites.
To illustrate, consider our earlier example:

String a = source.readLine (); // artificial abstract object

byte[] aAsBytes = a.getBytes (); // parametric artificial abstract object

The unified analysis will treat the readLine method call as the source of an artificial abstract
objectÐi.e., just like a new instruction for a points-to analysis. The artificial object represents a
specific taint and it is passed around as a value, alongside regular objects. Abstract objects of
the points-to analysis (i.e., regular allocation sites) and artificial abstract objects (i.e., taint source
markers) are truly orthogonalÐe.g., if a variable łpoints tož both kinds of objects, it is considered
to receive tainted objects (with taint originating at the marked source) allocated at a given site.

Similarly, calls to data transform functions (such as getBytes, above) are also sources of artificial
abstract objects. However, the call does not produce a single abstract object, but one per tainted
value flowing into the call, which ensures that all the origins of tainted values are preserved.

In this setting, sanitization functions merely control the inter-procedural propagation of artificial
abstract objects. The taint value simply does not flow into a sanitization method. In fact, this is the
only small intervention that is required in the original algorithmic logic of a points-to analysis in
order to support this approach: inter-procedural propagation needs to filter out artificial abstract
objects, but not regular ones, when a matching sanitization method gets called.

Advantages. The unified approach offers significant advantages. Most importantly, information-
flow analysis can transparently inherit all the functionality of a points-to analysis. This results
in information-flow analyses of increased sophistication. The enhancement can affect both the
precision and the recall of an analysis, i.e., its effectiveness in terms of both false positives and false

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



102:6 Neville Grech and Yannis Smaragdakis

negatives. For the former, we can employ significant precision enhancements, such as different
flavors of context sensitivity [Milanova et al. 2002, 2005; Sharir and Pnueli 1981; Shivers 1991;
Smaragdakis et al. 2011]. For the latter, we can use the detailed modeling of reflection that points-to
analysis frameworks have developed to track the flow of values [Li et al. 2014, 2015b; Livshits 2006;
Livshits et al. 2005; Smaragdakis et al. 2015]. We shall discuss these benefits in detail in Sections 4
and 7.

3 ANALYSIS DESIGN

We next demonstrate the unified points-to and information analysis approach in a model: a logic-
based specification (in the syntax of the Datalog language, which is equivalent to first-order logic
with recursion [Immerman 1999]) over a minimal input language. This serves two important
purposes. First, it makes our description of the previous sections precise.3 Second, it showcases
the generality of the approach. The model we present is an incremental addition over a standard
logical specification, for Andersen-style points-to analyses. Smaragdakis and Balatsouras [2015]
show that this model captures virtually all realistic pointer analysis algorithms and can be enriched
with many features, such as context-sensitivity, arrays, reflection analysis, exception-flow analysis,
and more. These additions are transparent relative to our minimal changes to the base model. This
allows information-flow analysis to be unified with a large variety of points-to analyses.

3.1 From Pointer to Information-Flow Analysis

We begin by discussing the preliminary changes to enable the analysis of information flow simul-
taneously with points-to analysis, ignoring data transform functions and sanitization. We add
support for these features in Sections 3.2 and 3.3.
Fig. 1 shows the domain of our analysis, its inputs, computed relations and outputs, as well

as a constructor function that produces new tainted values. Fig. 2 shows the analysis. We

enclose in red boxes the elements that have been modified to support information flow, unless
they are mere renamings of arguments and predicates. The rule syntax is simple: the left arrow
symbol (←) separates the inferred facts (i.e., the head of the rule) from the previously established
facts (i.e., the body of the rule).
We explain the contents and changes in both figures in more detail below.

Schema Changes. We define a value abstraction A that encompasses both heap abstractions,
AH , (defined as object allocation sites in pointer analysis) and tainted value abstractions, AT . As
we saw in the previous section, tainted value abstractions are similar to heap abstractions, and
also represent sites in the program where the values are introduced. We rename the main output
relations of points-to analysis, VarPointsTo and FldPointsTo, to FlowsToVar and FlowsToFld,
respectively, to better match their new roles. The output or intermediate computed relations (Leak,
FlowsToVar, FlowsToFld) are defined in terms of value abstractions, where previously they were
defined on heap abstractions. In almost all cases both heap and tainted value abstractions are
treated identically in our rules.

Algorithmic Changes. The striking feature of Fig. 2 is the lack of changes in the main rules that
propagate values through the heap and through method calls. The first eight rules in the Figure
are the standard model of a (context-insensitive) points-to analysis. The only change is in the
computation of a call graph (predicate CallGraph). Not all value abstractions are used when

3In a close analogy, the latest edition of the Java Virtual Machine specification [Lindholm et al. 2015, p.170-320] offers a

Prolog/Datalog specification of the JVM verifier, using łEnglish language text [...] to describe the type rules in an informal
way, while the Prolog clauses provide a formal specification.ž

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



P/Taint: Unified Points-to and Taint Analysis 102:7

V is a set of program variables

AH is a set of heap value abstractions (i.e., allocation sites)

AT is a set of tainted value abstractions (AH ∩AT = ∅)

A is a set of all value abstractions (i.e. AH ∪AT )

M is a set of method identifiers

S is a set of method signatures (including name, type signature)

F is a set of fields

I is a set of instructions

T is a set of class types

N is the set of natural numbers

Alloc(var : V, heap : AH , meth : M) # var = new ...

Move(to : V, from : V ) # to = from

Load(to : V, base : V, fld : F) # to = base.fld

Store(base : V, fld : F, from : V ) # base.fld = from

VCall(base : V, sig : S, invo : I, meth : M) # base.sig(..)

SourceMethod(meth : M, type : T )

SinkMethod(meth : M, n : N)

FormalArg(meth : M, n : N, arg : V )
ActualArg(invo : I, n : N, arg : V )
FormalReturn(meth : M, ret : V )
ActualReturn(invo : I, var : V )
ThisVar(meth : M, this : V )
ValueType(value : A, type : T )
LookUp(type : T, sig : S, meth : M)

Leak(value : AT , sink : I )

FlowsToVar(var : V, value : A)
CallGraph(invo : I, meth : M)
FlowsToFld(baseH : A, fld : F, value : A)
InterProcAssign(to : V, from : V )
Reachable(meth : M)

NewTaintedValue(invo : I, type: T ) = value : AT

Fig. 1. Our domain, input relations, computed relations and constructor of tainted values, adapted from

Smaragdakis and Balatsouras [2015]. The input relations are of two kinds: relations encoding program

instructions and relations encoding type system and other environment information. New additions are

enclosed in red boxes.

computing receiver objects for virtual calls: the receiver object has to be a regular heap abstraction.
This check prevents the analysis from reaching methods that are not truly reachable for any real
object, even though an artificial taint object appears to reach the invocation site. This can arise
because of slightly different propagation rules for heap abstractions and taint value abstractionsÐfor
instance, taint transform rules (Section 3.2) introduce shortcuts that may facilitate the flow of taint
values even in cases where normal objects would not propagate.

The last two rules are new. They simply mark calls to information sources as sites where abstract
values are created, and information sinks as sites of leaks, to be reported as part of the output.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



102:8 Neville Grech and Yannis Smaragdakis

FlowsToVar(var, value)←
Reachable(meth),
Alloc(var, value, meth).

FlowsToVar(to, value)←
Move(to, from),
FlowsToVar(from, value).

Reachable(toMeth),
FlowsToVar(this, value),
CallGraph(invo, toMeth)←
VCall(base, sig, invo, inMeth),
Reachable(inMeth),

FlowsToVar(base, value), value ∈ AH ,

ValueType(value, heapT ),
Lookup(heapT, sig, toMeth),
ThisVar(toMeth, this).

InterProcAssign(to, from)←
CallGraph(invo, meth),
FormalArg(meth, n, to),
ActualArg(invo, n, from).

InterProcAssign(to, from)←
CallGraph(invo, meth),
FormalReturn(meth, from),
ActualReturn(invo, to).

FlowsToVar(to, value)←
InterProcAssign(to, from),
FlowsToVar(from, value).

FlowsToFld(baseH, fld, value)←
Store(base, fld, from),
FlowsToVar(from, value),
FlowsToVar(base, baseH ).

FlowsToVar(to, value)←
Load(to, base, fld),
FlowsToVar(base, baseH ),
FlowsToFld(baseH, fld, value).

NewTaintedValue(invo, type) = value,
FlowsToVar(to, value)←
SourceMethod(meth, type),
CallGraph(invo, meth),
ActualReturn(invo, to).

Leak(value, sink)←
CallGraph(sink, meth),
SinkMethod(meth, i),
ActualArg(sink, i, from),
FlowsToVar(from, value), value ∈ AT .

Fig. 2. Datalog rules for points-to analysis, call-graph construction and simple information-flow analysis.

The first of the two rules states that every time a source method (input predicate SourceMethod)
is computed to be reachable (using CallGraph), the variable receiving the return value (to) points
to a new abstract value. The introduction of new abstract values is done via the constructor
NewTaintedValue. This constructor function is a parameterization point for the analysis, but
it will typically be defined to retain all information passed to it:
NewTaintedValue(invo, type) = pair(invo, type) : AT

That is, new value abstractions will encode both the invocation site and the value type. Taint can
be transferred from one value abstraction to another, and we will see later how this encoding helps
ensure that value abstractions only get a single type. The invocation site is useful in order to record
where the tainted value is originally introduced in the program.

The last rule is a mere consumer of the analysis results. It states that a leak is found if an abstract
taint value reaches the i-th argument at the invocation site (sink) of a sink method whose i-th
argument is sensitive (SinkMethod(meth,i)).

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



P/Taint: Unified Points-to and Taint Analysis 102:9

BaseToRetTransfer(meth : M, type : T )
ArgToRetTransfer(meth : M, n : N, type : T )
IsTaintedFrom(to : V, from : V, type : T )
TransferTaint(value : A, type : T ) = newValue : AT

IsTaintedFrom(from, to, type)←
CallGraph(invo, meth),
BaseToRetTransfer(method, type),
VCall(from, _, invo, _),
ActualReturn(meth, to).

IsTaintedFrom(from, to, type)←
CallGraph(invo, meth),
ArgToRetTransfer(method, n, type),
ActualArg(invo, n, from),
ActualReturn(meth, to).

TransferTaint(value, type) = newValue,
FlowsToVar(var, newValue)←
IsTaintedFrom(from, to, type),
FlowsToVar(from, value), value ∈ AT ,
FlowsToVar(to, oldValue),
Alloc(var, oldValue, _).

Fig. 3. Transferring information: two new input predicates, a new intermediate predicate, a new constructor,

and rules that transfer taint through predefined methods.

3.2 Flow-Through Data Transform Functions

As we saw in Section 2, taint can flow through data transform functions, so that values of different
types become tainted. To support data transform functions, we augment our earlier model with the
extra relations and rules in Fig. 3. These rules add extra logic for the creation of taint objectsÐthe
original rules of Fig. 2 remain unchanged and values flow identically through the heap, local
variables, and method calls. This is a representative but not complete list of taint transfer rules.
P/Taint defines more ways in which taint can be transferred. For instance, a method may be tainting
only a specific field of a returned object.
Fig. 3 defines two new input relations, BaseToRetTransfer and ArgToRetTransfer, an

intermediate predicate IsTaintedFrom, and new constructor function TransferTaint. The new
input relations encode how the return value of a (data transform) method is tainted, as a function
of either the method call’s receiver variable (base variable) or argument. For convenience, the new
tainted value’s type is listed explicitly. The first two rules of Fig. 3 combine the input information
into a more general intermediate predicate, IsTaintedFrom(from,to,type), capturing which variables
hold the input and the new tainted value, as well as the type of the latter.
The third rule of the figure is responsible for creating a new tainted value when an existing

tainted value flows to a transform function. The rule body contains a subtle feature: the new value
is created not at the point of return of the transform function (variable to) but at any point where
heap objects are allocated and assigned for the first time, as long as these objects flow to to. We
have found this to yield maximum generality and precision in our P/Taint implementation.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



102:10 Neville Grech and Yannis Smaragdakis

FlowsToVar(to, value)←
InterProcAssign(to, from),

FlowsToVar(from, value), value ∈ AH .

SanitizationMethod(meth : M)

FlowsToVar(to, value)←
InterProcAssign(to, from),
FlowsToVar(from, value), value ∈ AT ,
! (FormalArg(meth, _, to),
SanitizationMethod(meth) ).

Fig. 4. Sanitization: We define a new input relation SanitizedMethod and modify the inter-procedural

assignment logic defined in Fig. 2.

The new tainted value is created using the TransferTaint constructor, employed at the head
of the rule. The constructor is a parameter to the analysis model: different definitions will determine
how many taint abstract objects are created, affecting precision and scalability. A reasonable
definition is:

TransferTaint(value, type) = pair(first(value), type) : AT

That is, the new tainted value encodes the first half of the input tainted value (i.e., the invocation
site of the original taint source) and the type of the new tainted value. The new taint value has the
appropriate type and propagates through the rest of the analysis without thwarting type invariants.
Precise type information for value abstractions is used, for instance, to limit the propagation of
values through casts, which results in a more precise analysis.

In practice, this encoding not only ensures that the number of tainted values remains finite,
but aids in performance. An original value’s taint is typically transferred several times during an
analysis. It is not necessary to construct a new tainted value each time if a tainted value of the
same type exists that originates from the same invocation site.

3.3 Sanitization Functions

The final element that information-flow analysis needs to support is sanitization of values. San-
itization simply disallows the flow of tainted values through predefined functions. In order to
support this functionality, we introduce a new input relation, SanitizationMethod, and modify
the inter-procedural assignment logic. Fig. 4 shows the result. Note that the last rule modifies the
corresponding rule in Fig. 2, while the first rule is new.

The rules handle heap abstract objects differently from taint abstract objects. The former propa-
gate as in the original analysis. The latter propagate only if it is not the case that the target of the
assignment (variable to) is a formal argument of a sanitization method.

4 SCALING TO A FULL TAINT ANALYSIS FRAMEWORK: BENEFITS

The model of the previous section is a good illustration of the principles behind the unified analysis
approach. It is also the basis of our realistic information-flow analysis framework, P/Taint. P/Taint
is built on top of Doop [Bravenboer and Smaragdakis 2009b]Ða full-fledged points-to analysis
library. Thanks to the seamless unification of pointer and information-flow analysis, a large part of
the features and algorithmic enhancements of P/Taint are inherited directly from Doop. Indeed,
P/Taint is now fully integrated with the standard Doop framework 4. We proceed to describe how
the approach scales to a realistic language and what benefits we get from it.

4Available online at: https://bitbucket.org/yanniss/doop

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.

https://bitbucket.org/yanniss/doop


P/Taint: Unified Points-to and Taint Analysis 102:11

4.1 Broad Support of Java Semantics

The minimal model of the previous section ignores several realistic semantic complications. These
include support for the full Java bytecode language (including: static fields and methods; casts;
arrays; exception handling; finalization; class initialization; final fields), as well as semantics pre-
scribed in the Java Virtual Machine specification (including: JVM initialization; initial threads and
thread groups; privileged actions). These features need to be modeled for a security analysis that
has a realistic claim to completeness. Furthermore, modeling these features has a far-from-trivial
effect on static analysis complexity. For instance, handling exceptions more precisely yields an
order-of-magnitude performance improvement for many analyses [Bravenboer and Smaragdakis
2009a]; modeling privileged actions (i.e., objects handled to the JDK’s doPrivileged method) is
crucial for analyzing realistic programs and their inclusion often results in a 2-orders-of-magnitude
slowdown.

A large part of the benefit of the unified points-to/information-flow approach is that the above
semantic complications are only handled once. The implementation of P/Taint transparently
includes the corresponding analysis features from Doop, with no further modification necessary.
Essentially, all modeling of language semantics concerns the flow of values and remains unchanged
regardless of whether these values are abstract heap objects or abstract taint objects.
Importantly, we cannot get the same benefit by having information-flow analysis be a mere

client of points-to analysis, i.e., consuming its results only. For instance, it is not enough to know
that an abstract (heap) object was originally tainted and flows to a sink. We also need to track
its taint separately (through the full set of language features) and see if it also flows to the same
sink or gets filtered out by a sanitization function. Similar complications arise in the case of data
transform functions: we need to know the exact kind of taint (i.e., its source) that flows to such a
function, through any language mechanism (e.g., exceptions or implicit initialization) to determine
the tainted value produced.

4.2 Reflection

One language feature that is worth special attention is reflection. Reflection allows highly dynamic
behavior in an otherwise static language: reflection operations can be used to create objects of a
dynamically-determined type and access dynamically-determined methods or fields of any object.
Handling reflection in static analysis is a complicated topic with an ever-growing literature [Li
et al. 2014, 2015b; Livshits et al. 2005; Smaragdakis et al. 2015]. Furthermore, handling reflection is
crucial for security analyses [Lerch et al. 2014; Livshits 2006].

P/Taint inherits the Doop support for reflection, which significantly enhances the framework’s
ability to detect information-flow violations. Taint values are propagated through reflection opera-
tions transparently, much like they are through the heap and calling stack in our earlier analysis
rules. Reflection support constitutes about one-fifth of the Doop core code (i.e., the code excluding
different points-to analysis variations): over 2KLoC, or some-200 logical rules. Replicating this
machinery would have required significant effort.

4.3 Context Sensitivity and Precision

An important aspect of every static analysis is precision. In the case of security analyses, this
translates to a low false-positive rate for analysis warnings. A major way to gain precision for a
points-to analysis is via context sensitivity: qualifying variables and abstract objects with context
information, so that two instances of the same local variables (for different invocations of the
method) or of the same abstract object are not conflated.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



102:12 Neville Grech and Yannis Smaragdakis

Merge(value, hctx, invo, callerCtx) = calleeCtx,
Reachable(calleeCtx, toMeth),
FlowsToVar(calleeCtx, this, hctx, value),
CallGraph(callerCtx, invo, calleeCtx, toMeth)←
VCall(base, sig, invo, inMeth),
Reachable(callerCtx, inMeth),
FlowsToVar(base, value), value ∈ AH ,
ValueType(value, heapT ),
Lookup(heapT, sig, toMeth),
ThisVar(toMeth, this).

Fig. 5. Context-sensitive version of earlier rule. (Merge is the standard constructor for new contexts at

virtual call sites.)

Acquiring precision through context sensitivity is one of the benefits of the unified points-
to/information-flow analysis approach. The model of Section 3 is context-insensitive, yet there
is a well-established pattern for adding context sensitivity to the same rules [Smaragdakis and
Balatsouras 2015]. Furthermore, the pattern allows different context models to be plugged in, by
defining constructors Record andMerge [Kastrinis and Smaragdakis 2013; Smaragdakis et al.
2011]. (Indeed, the Doop framework underlying P/Taint is the practical incarnation of this model
of parametric context sensitivity.) We can, thus, exploit call-site sensitivity [Sharir and Pnueli 1981;
Shivers 1991], object sensitivity [Milanova et al. 2002, 2005], type sensitivity [Smaragdakis et al.
2011], and hybrid sensitivities [Kastrinis and Smaragdakis 2013].
In the full, context-sensitive, versions of the rules of Section 3, ctx and hctx parameters (for

variable and object contexts, respectively) are added to all rules. For instance, the rule inferring
CallGraphEdge in Fig. 2 is shown in context-sensitive form in Fig. 5.Merge is used to create
new calling contexts (or just łcontextsž) at virtual call sites. These contexts are used to qualify
method calls, i.e., they are applied to all local variables in a method. TheMerge function takes
all available information at the call-site of a virtual method call and combines it to create a new
context (if one for the same combination of parameters does not already exist). Different definitions
of Merge yield different context-sensitivity flavors.

4.4 Other Pragmatic Features

Pragmatic features that aid in the practicality of P/Taint can naturally fit within its simple design.
One of these is the ability to label sources and sinks, a feature that enables the checking of simple
security policies. Labeling is implemented by augmenting the NewTaintedValue construct,
primarily by adding an argument containing the label of the source. The construct indexes the
tainted value’s origin with the label so that the label can be retrieved when FlowsTo data is queried.
Labels add a negligible constant overhead to the analysis. Furthermore, one can check simple
security policies. For example, checking if personally identifiable information is flowing to insecure
public channels, or filtering out from the results medium sensitivity information flowing into logs.

Moreover, P/Taint supports breadcrumbs, which can be associated with tainted value abstractions
to help the framework user debug the information flow in her application. Breadcrumbs enable the
framework user to understand not just the provenance of the information but also the intermediate
steps in its flow. These pieces of information can be added to the tainted value abstractions by
taint transfer rules and methods. The TransferTaint construct takes a selection of predefined

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



P/Taint: Unified Points-to and Taint Analysis 102:13

breadcrumbs and the information is preserved with the information-value abstraction each time
the taint is transferred from one value abstraction to another. Breadcrumbs can be post-processed
and presented in queries to help piece together the flows of information.

4.5 Overall Benefit

We implemented the core information-flow analysis logic of P/Taint on top of the Doop framework
in just ∼200 lines of Datalog code.5 Apart from renamings and simple refactorings, only ∼30 lines
of the Doop code were modified. These are well-captured by the model of Section 3: they treat taint
abstract objects differently for purposes of sanitization and call-graph construction.

Indeed, much of the effort of designing and implementing the P/Taint information-flow analysis
consisted of non-coding or orthogonal tasks:

• configuring sources, sinks, and sanitizers using regular expressions that encode method
descriptors;
• checking that the approach indeed works without needing changes to existing points-to
analysis codeÐi.e., that taint abstract objects should indeed be propagated unchanged through
all the handling of Java semantics.

The experience has been a striking (to us) validation of the value of integrating points-to and
information-flow analysis.

5 DISCUSSION

We next discuss further the advantages and disadvantages of the P/Taint approach, contrasting it
with alternatives.

5.1 Contrast with Conventional Approaches

To see the key features of the unified analysis, we can consider it in comparison to analysis
approaches that have largely similar purposes, yet a conventional structure.

Conventional Datalog-based taint analysis. The Beacon static analysis tool [Karim et al. 2012]
aims to detect capability leaks in Mozilla Jetpack modules. Beacon, much like P/Taint, is performing
a taint analysis using Datalog inference rules. Although the use of Datalog is orthogonal to the
principles of our joint points-to/information-flow approach, it is helpful to have a succinct encoding
of the two analyses so that their differences are clear.

In Beacon, taint analysis is a client of points-to analysis. There are separate relations PtsTo(var,
val) and IdIsTainted(var, taintType), both of which correspond to our FlowsToVar(var, val). Similarly,
Beacon has separate relations HeapPtsTo(obj, fld, val) and IsTainted(obj, taintType), both of which
correspond to our FlowsToFld(obj, fld, val). This results in duplication of effortÐe.g., there are two
slightly different recursive rules [Karim et al. 2012, Table 6] that form the basis of the analysis
by combining the main relations: one rule joins PtsTo and IsTainted to produce IdIsTainted,
while the other joins PtsTo and HeapPtsTo to produce PtsTo. Such duplication percolates to all
language features of a realistic analysis.
A feature of P/Taint’s unified approach is the representation of taint as new abstract values

that propagate independently of regular objects (through the exact same rules for value flow). In
contrast, in Beacon, object allocations are tagged with taint values, employing a separate input
relation IsPrivileged(obj, taintType). This design decision goes hand-in-hand with the choice to
have taint analysis as a client (i.e., consumer of results) of a plain, unenhanced points-to analysis.

5The framework is much larger, but due to orthogonal functionality, aimed at security analysis, such as support for Android

or for analyzing open programs (discussed in Section 6),

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



102:14 Neville Grech and Yannis Smaragdakis

By tagging heap objects at their allocation point as tainted, points-to analysis can merely propagate
the objects (just as it would for an analysis without taint considerations). Taint analysis can then
watch where objects have propagated and propagate taint maximally. In Beacon, this means that if
an object merely refers to a tainted object (even without reading values from tainted fields), it is
considered tainted. Comparing the two designs showcases the benefits of the P/Taint approach on
multiple dimensions:

• The P/Taint approach avoids the need to tag heap allocations with taint labels. This is low-
level information that the user may not have, and the allocations themselves may even
be unavailable for labeling (e.g., objects may be returned by native code). Labeling source
methods instead is more convenient and general.
• The P/Taint approach enables support for sanitization: a regular object can propagate even
when an associated taint value does not. In Beacon, tagging with a taint is a property of a
heap object but the heap object may have propagated to several points in the program before
being tainted, and can propagate to many others after being sanitized. Thus, no distinction
of tainted/untainted versions can be made.
• The P/Taint approach enables labeling primitive values, not merely heap objects. As a concrete
example, a method such as łint BufferedReader.read()ž is merely labeled as an information
source. In this way, it implicitly creates taint values, even though it does not create objects
(since it returns ints). These taint values propagate throughout the value-flow analysis of all
language features with no extra effort needed.
• P/Taint’s analysis is fundamentally more precise. If an object is tainted and there is a reference
to it from some other object, the parent object is never tainted by default. This makes many
fewer objects tainted, decreasing the false-positive rate. E.g., P/Taint’s analysis is able to
distinguish whether the head or one of the tail objects of a linked list is tainted.

In all, the unified P/Taint approach yields a full-fledged information-flow analysis, complete with
sanitization support, benefiting from a deep reuse of all the sophistication of points-to analysis.

Security analysis for frameworks. The unified P/Taint approach leverages, without extra effort,
a general-purpose points-to analysis of the entire program, including libraries. Thus, compared
to conventional approaches, P/Taint has less of a need for ad hoc models of environment-specific
behavior. For instance, many taint analysis frameworks for Android (e.g., FlowDroid [Arzt et al.
2014] or DroidSafe [Gordon et al. 2015]) do not analyze the underlying library. Library operations,
e.g., java.util.HashSet.add are instead explicitly modeled as taint transfer functions, so that if
a tainted object is added to a set, the underlying Set is also tainted. Although it is tempting to
shortcut the analysis by defining taint transfer functions specific to the domain, this will always be
an incomplete exercise.
P/Taint does not need definitions like these. Instead the underlying points-to analysis models

the flow through the low-level data structures. The taint travels from a java.util.HashSet to
an underlying java.util.HashMap, to the underlying java.util.HashMap.Entry, etc. This generic
approach to taint transfer is very effective, especially when analyzing applications in the wild.
Large software houses tend to use a third party data structures, sometimes even defining their own
for various reasons instead of relying on what is offered in the collections library.

5.2 Limitations

A unified points-to/taint analysis inherits the benefits of mature points-to analysis frameworks,
yet is also limited by what the framework can express. This is well illustrated both in our analysis
model and in the full P/Taint implementation. Although the model of Section 3 captures a wealth of

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



P/Taint: Unified Points-to and Taint Analysis 102:15

realistic points-to analysis algorithms, it also fixes important design parameters, thus constraining
the analyses expressible in it. Two such limitations are notable:

• The model (as well as the Doop framework underlying P/Taint) captures a flow-insensitive
analysis. The analysis builds a heap abstraction that does not vary per-program-point. (To a
lesser extent, this limitation also applies to local variables, however this is addressed by a
static-single-assignment pre-processing of the input.) Past information-flow analysesÐe.g.,
FlowDroidÐhave integrated partial flow sensitivity to increase analysis precision. Some code
patterns will likely require a flow-sensitive treatment for full precision. However, context
sensitivity is generally a better trade-off for pointer-analysis precision and performance. In
our experiments we have found that a context-sensitive analysis yields excellent precision in
all but very few cases.
• The analysis model does not capture analyses that use an access-path-based formulation.
Access paths are expressions of the form łvar(.fld)*ž, i.e., field-access expressions of any length.
A pointer analysis can employ access paths in concepts such as łthis access path points to
this valuež or łthese access paths are aliasedž. This can be extended to taint analysisÐe.g.,
the Andromeda tool [Tripp et al. 2013] computes tainted and aliased access paths in a dual
data-flow analysis. Access paths are generally advantageous for modular analyses, e.g., to
avoid computing a whole-program image of the heap.

Both of these limitations concern the current formulation of unified points-to and taint analysis,
and not the general idea. In principle, a flow-sensitive points-to analysis or an access-path-based
analysis can be used as bases for unification with an information-flow analysis. Such unification
can employ the same key elements as in our formulation: taint can be represented as abstract values
that flow alongside regular analysis values.

6 PRACTICAL ELEMENTS

No practical analysis framework can yield realistic results without engineering effort to support the
idiosyncrasies of different environments. We next discuss the P/Taint support for such important
practicalities.

6.1 Android Support

P/Taint supports Android, with a feature set very similar to FlowDroid [Arzt et al. 2014]. A
list of sources and sinks for Android was curated and labeled according to predefined criteria
(e.g., Telephony, Logging, Net). We made several more enhancements of general value, largely
orthogonal to taint analysis. For instance, the underlying Doop analysis was enhanced with support
for analyzing Android apps, in the form of identifying entry points and UI elements described in
XML configuration files (a.k.a. the application’s łmanifestž).

Android lifecycle. P/Taint (and the underlying Doop framework) models the Android component
lifecycle. It reads the manifest in an application’s APK file to discern the application’s components.
Android components include activities, services, broadcast receivers, etc. and can have multiple
entry points. GUI widgets are listed in the manifest and can be linked to their respective application
components. Components also register for callbacks on events. In addition to making the callback
reachable, the caller (the component raising the event) needs to be linked to the callee.

Inter-component communication. Inter-component communication is naively modeled, in a way
similar to FlowDroid’s modeling of inter-component communication. P/Taint over-approximates
explicit inter-component communication, for instance by modeling methods that send explicit
messages (łintentsž) as sinks and callbacks that receive intents as sources.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



102:16 Neville Grech and Yannis Smaragdakis

Misc. Android patterns. Further improvements to the underlying analysis were performed in
order to support the idiosyncrasies of Android applications. Tainted values can also emanate from
GUI components. For instance, password components that are specifically tagged in the manifest
as password fields are treated specially: any textual input read from these fields is flagged as
tainted. Furthermore, Dalvik bytecode does not have instructions to create multi-dimensional
arrays. Instead, it uses the reflection API to construct such arrays. Although P/Taint has generic
reflection support, we have optimized this specific pattern for performance and precision as this is
a regularly occurring pattern.

6.2 Conventional Java Program Support

Conventional JVM programs also need specific analysis support for common Java features. A
common case of Java programs is servlet applications, meant to be executed inside a web server.
P/Taint supports them via features for analyzing open programs, i.e., programs with multiple public
entry points and not a single main method to start the computation. The analysis only requires an
accurate model of the environment in order to compute a precise call graph. P/Taint’s support for
open programs finds entry points for servlets and adds them to the call graph. It also instantiates
the environment of servlet applications, i.e., receiver objects, formal parameters to entry points,
etc.

We introduce some level of generic handling of many string operations by modeling the internals
of the java.lang.String class. In order to model taint transfer through various kinds of string
operations, we model String objects so that their taint is derived from their internal char[] value

field. This means that if a String object is tainted, its internal char array is treated as tainted and vice
versa. The advantage of this approach is that it adds generality. For instance, a user may introduce
new operations (e.g., writes his/her own version of concat), or operations may be added to the String
class in other versions of the JRE. This approach only works for pure Java operations, so common
string operations which rely on native code under the hood (e.g., StringBuilder operations) are
modeled explicitly.
Serialization and deserialization of objects containing tainted values is also modeled explicitly,

as serialization and deserialization is performed using native code.

7 EVALUATION

In this section, we present the results of our experimental evaluation of P/Taint. There are several
research questions that our experiments intend to answer:

RQ.A Does our unified points-to/information-flow analysis approach yield precision benefits,
i.e., a low rate of false positives?

RQ.B Does the unified points-to/information-flow analysis approach yield recall benefits, i.e., a
low rate of false negatives?

RQ.C Is P/Taint overall effective at detecting information flow violations with high precision,
compared to other tools in the literature?

RQ.D Is P/Taint scalable and is it efficient in terms of run time?

We have two distinct experimental setups. One consists of a set of controlled benchmarks: suites
with ground truth (in terms of labeled information leaks) and source code we can inspect. The
other is a set of large łapplications in the wildž: Android apps of substantial size without labeled
information flow sources/sinks/violations.

We ran P/Taint on an idle machine with an Intel Xeon E5-2687W v4 3.00GHz and 256GB of RAM.
We used the PA-Datalog engine, a publicly available, stripped-down version of the commercial
LogicBlox Datalog engine. In addition to the LogicBlox version evaluated here, we are also releasing

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



P/Taint: Unified Points-to and Taint Analysis 102:17

a newer version of P/Taint that uses the Soufflé [Jordan et al. 2016] Datalog engine. This can run
more than twice as fast on multicore machines on many benchmarks.

7.1 Controlled Benchmarks

We use several controlled benchmarks to evaluate P/Taint:

SecuriBench Micro. [Livshits 2006] This benchmark contains 122 labeled servlets with possi-
ble security flaws (e.g., SQL injection).

JInfoFlow-bench. 12 plain Java benchmarks exercising reflection, event-driven architecture,
and popular software engineering patterns.

DroidBench 2.0. [Arzt et al. 2014] Multiple Android security benchmark suites.

SecuriBench Micro benchmarks are servlet applications. P/Taint’s open program support (Sec-
tion 6) eliminates the need to write a test harness for each individual SecuriBench application. Using
this feature we were able to analyze the entire benchmark suite (all 122 servlets) simultaneously,
producing an application with 266 entry points and 3.2K classes, including libraries. While running
the benchmarks, we inspected SecuriBench Micro manually and (on very few instances) corrected
the reported numbers relative to the official benchmark page.6 (For instance, test case Basic31 has
meta-data that claim two vulnerabilities, while the code clearly documents three. This makes the
total number of vulnerabilities in the basic package be 61 instead of 60.)
JInfoFlow-bench is a benchmark suite that we developed to distill some popular but hard-to-

analyze software engineering patterns. The programs in the suite require a highly precise analysis,
as well as reflection support to detect information-flow violations. For instance, one benchmark
encodes an event framework, which relies heavily on reflection. JInfoFlow-bench is platform- and
library-agnostic. Since the benchmark suite does not rely on the use of external libraries for most
of its behavior, it should be harder to write a security analyzer specifically optimized for this
benchmark.

DroidBench 2.0 is a collection of benchmark suites designed to test for various vulnerabilities in
Android applications. It contains 118 distinct Android applications spread over several benchmark
suites. We evaluate P/Taint on all these benchmarks, except for benchmarks within the implicit-flow
suite (4 applications) and emulator detection (3 applications). The latter benchmark suite is intended
for dynamic analysis, to detect whether the application behaves differently under emulation, while
the former is intended for taint analyzers that model control dependencies.
We analyzed SecuriBench Micro and JInfoFlow-bench with JRE 7 and Servlet API 3.0, and

analyzed DroidBench with Android 25.

7.1.1 Overall Effectiveness. As discussed earlier, building P/Taint on top of the Doop framework
gives us the ability to employ highly precise analyses, due to context-sensitivity, and thorough Java
language feature support (including reflection).
Figures 6 and 7 make this argument concrete. The figures show a summary of the results of

running P/Taint, using a highly precise form of context sensitivity (selective hybrid 2-object-
sensitive+heap [Kastrinis and Smaragdakis 2013]) with reflection analysis support, on all JVM and
Android controlled benchmarks.

The overall result is very high recall (RQ.B) and very high precision (RQ.A). For instance, in
the JVM controlled benchmarks the analysis achieves 91% precision and 99% recall in SecuriBench
Micro, as well as 100% precision and recall in our own JInfoFlow benchmark. The analysis issues just
13 false positives for over 150 detected information-flow violations in these benchmarks. For most
benchmark sub-suites, P/Taint yields a perfect score for precision and recall. The false positives

6https://suif.stanford.edu/~livshits/work/securibench-micro/descr.html

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.

https://suif.stanford.edu/~livshits/work/securibench-micro/descr.html


102:18 Neville Grech and Yannis Smaragdakis

Suite TP FP FN Precision Recall

Total 139 13 1 91% 99%

aliasing 12 0 0 100% 100%
arrays 9 5 0 64% 100%
basic 61 0 0 100% 100%
collections 14 2 1 88% 93%
datastructures 6 0 0 100% 100%
factories 3 0 0 100% 100%
inter 17 0 0 100% 100%
pred 5 3 0 62% 100%
reflection 4 0 0 100% 100%
sanitizers 4 0 0 100% 100%
session 3 1 0 75% 100%
strong updates 1 2 0 33% 100%

Total 15 0 0 100% 100%

JInfoFlow/basic 2 0 0 100% 100%
JInfoFLow/ctx 5 0 0 100% 100%
JInfoFlow/event 4 0 0 100% 100%

Fig. 6. Summary of results for all JVM controlled benchmarks analyzed under selective hybrid 2-object

sensitivity + heap context sensitivity and reflection support enabled. The top group of benchmarks breaks

down the 12 sub-suites of SecuriBench, while the bottom comprises the 3 sub-suites of JInfoFlow-bench.

Suite Vulnerabilities TP FP FN Precision Recall

Total 99 95 16 4 86% 96%

Aliasing 0 0 1 0 0%
AndroidSpecific 11 9 2 2 82% 82%
ArraysAndLists 3 3 4 0 43% 100%
Callbacks 16 16 4 0 80% 100%
FieldAndObjectSensitivity 2 2 2 0 50% 100%
GeneralJava 21 21 0 0 100% 100%
InterAppCommunication 2 2 2 0 50% 100%
InterComponentCommunication 18 17 1 1 94% 94%
Lifecycle 17 16 0 1 100% 94%
Reflection 4 4 0 0 100% 100%
Threading 5 5 0 0 100% 100%

Fig. 7. Summary of results for all relevant DroidBench suites. The analysis is identical to Figure 6.

that were recorded are mostly due to the fact that P/Taint is not flow- or path-sensitive, nor is it
array-sensitive, i.e., it does not discriminate a specific array index from another.

P/Taint fares almost equally well on Android benchmarks (DroidBench), with 86% precision and
96% recall, although supporting Android had not been the main focus of the work. A similar pattern
as before emerges: P/Taint’s false positives are mainly due to it not being flow-sensitive. (In fact,
the suite FieldAndObjectSensitivity mostly tests for flow sensitivity rather than object sensitivity.)

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



P/Taint: Unified Points-to and Taint Analysis 102:19

Fig. 8. Precision metrics for SecuriBench Micro under different parameters of context sensitivity (e.g., ins is a

context insensitive analysis). Only leftmost and rightmost data labels shown for readability.

It is worth noting that P/Taint achieves highly competitive precision and recall relative to those
reported by recent state-of-the-art systems (RQ.C) like FlowDroid [Arzt et al. 2014] and Pidgin
[Johnson et al. 2015]. Pidgin achieves 90% precision and 97% recall on the SecuriBench Micro
benchmark suite, per its published numbers. FlowDroid is reported to achieve 93% precision and
97% recall on a subset of SecuriBench Micro (that does not include the łreflectionž, łsanitizersž,
or łpredž suites), as well as 86% precision and 93% recall on an earlier version of DroidBench
(containing 35 benchmarks out of the 118 that exist today).

Additionally, P/Taint is highly efficient (RQ.D). The analysis of Fig. 6 took just over 7 minutes to
analyze 122 servlet benchmarks. DroidBench benchmarks were analyzed individually, with each
taking under 150sec.
We next examine in more detail the precision, recall, and efficiency, when the analysis settings

change. We focus on the SecuriBench Micro and JInfoFlow-bench suites because they can be run in
a brief amount of time.

7.1.2 Sensitivity Analysis: Precision. Since context sensitivity is the main precision enabler in
points-to analysis, we ran the SecuriBench Micro and JInfoFlow-bench benchmarks for different
flavors of context sensitivity, as well as for a context-insensitive analysis. Fig. 8 shows the different
precision scores for the SecuriBench Micro suite and Fig. 9 does the same for the rest of the
benchmarks.
The figures clearly show the impact of context sensitivity on precision. A context-insensitive

analysis would yield overall precision of 70% for SecuriBench and just above 80% for the rest of
the benchmarks. With our unified analysis approach, employing higher precision comes at no
development cost, and modifying the precision/scalability trade-off is a simple matter of picking a
different setting of context sensitivity.
A few other interesting insights emerge:

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



102:20 Neville Grech and Yannis Smaragdakis

Fig. 9. Precision metrics for JInfoFlow-bench under different analysis context sensitivity.

• Unsurprisingly, as the level of context sensitivity is improved, from context-insensitive (ins)
to selective hybrid 2-object sensitive + heap, we get better precision. However, some context
sensitivities are better than others under different circumstances. For instance type sensitivity
is better for than call-site sensitivity for SecuriBench, but not for the rest of the benchmarks.
• In P/Taint, context sensitivity helps us achieve greater precision even in benchmarks that
were not originally designed to exercise context sensitivity. P/Taint does away with a number
of predefined black box taint transfer functions designed to map information flow through
complex object structures in the JRE. Instead, P/Taint relies on its full semantic support of
the Java language and good context sensitivity.

7.1.3 Sensitivity Analysis: Recall. Reflection analysis is the main feature that enables higher
recall in realistic information-flow benchmarks. We ran P/Taint with and without reflection support
to compare recall. The analysis leverages Doop’s advanced reflection support [Smaragdakis et al.
2015]: it performs substring analysis (considers which string constants in the program could be
parts of a class, method, or field name in a reflection operation) and use-based analysis (considers
where the results of reflection operations are used, to infer what they must have been).

In SecuriBench Micro, for the setup of our earlier results in Fig. 6, recall dropped from 99.3%
to 97.2% when disabling reflection. Other flavors of context sensitivity experience near-identical
differences in recall and are not shown. Generally, securibench only has one sub-suite affected by
reflection so the overall numbers are not affected significantly.
The JInfoFlow-bench benchmarks have more interesting reflection-related behavior. We show

the impact of reflection support on the overall recall of the information-flow analysis in Fig. 10. As
can be seen, two of the sub-suites are significantly impacted by having static reflection support.

7.1.4 Sensitivity Analysis: Running Time. Fig. 11 shows the time required to analyze the various
benchmark suites under different analysis parameters. Note that the two parts of the figure are
not on the same scale: the support for open programs (such as SecuriBench’s servlets) has made
it possible to analyze all SecuriBench programs simultaneously, resulting in fast analysis times
(Fig. 11a). For the other suites, programs were analyzed individually and the overall time reached
several tens of minutes.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



P/Taint: Unified Points-to and Taint Analysis 102:21

Fig. 10. Recall for JInfoFlow-bench with and without reflection.

We can see clearly how the choice of context sensitivity influences analysis performance. Even
more strikingly, however, reflection support roughly doubles the execution time of the analysis.
Still, overall, the framework’s performance is high, with running time scarcely being a concern.

7.1.5 Unified Analysis vs. Points-To. Finally, we report some metrics on the performance and
internal complexity of the unified points-to/information-flow analysis, compared with the original
underlying points-to analysis. Recall that the algorithmic logic for the core of the two analyses is
identical, yet it now processes more abstract objects. It is interesting to see the relative proportion
of łflows tož inferences that pertain to taint abstract objects vs. those that pertain to heap abstract
objects.
Fig. 12 shows (for SecuriBench) the size of the FlowsToVar relation (with context projected

away, i.e., only the final useful information remaining), broken up into tuples that refer to abstract
taint values and tuples that refer to abstract heap values. Across multiple analyses, of varying
precision, we can see that the flow of taint objects is a significant part of the overall computation,
up to about 36% for two object-sensitive analyses and 33% for the call-site sensitive analysis. This
confirms that taint propagation is not a mere side-task for the underlying analysis logicÐeven with
relatively few taint sources, it often rivals the inferences made regarding the flow of heap abstract
objects.

7.1.6 Summary of Controlled Benchmarking. Overall, our experiments show P/Taint to perform
very well, with over 91% precision and near-perfect (over 99%) recall for SecuriBench, 86% preci-
sion and 96% recall for DroidBench, and perfect scores for JInfoFlow-bench. The analysis clearly
benefits from the precision and recall enhancements offered for free by a mature points-to analysis
framework. Furthermore, the framework is efficient, scaling with ease to all the benchmarks.

7.2 Real-World Android Applications

A second part of our experimentation consists in evaluating P/Taint over a selection of large,
popular Android applications: Google Chrome, Facebook Messenger, Google Translate, Instagram,
Pinterest, Pokeradar, S Photo Editor, WhatsApp. These are apps in-the-wild, downloaded from
Google Play. Additionally, they were analyzed with a full Android 25 SDK (i.e., with the library
built from source code and fully analyzed, in conjunction with the application).

Owing to the good soundness and precision of P/Taint, we were able to find interesting program
behavior and potential leaks. Figure 13 shows characteristics of the benchmarks examined, metrics

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



102:22 Neville Grech and Yannis Smaragdakis

(a) SecuriBenchMicro (all programs analyzed simultaneously)

(b) JInfoFlow-bench (each program analyzed individually)

Fig. 11. Total run time for the analysis of benchmarks suites under different flavors of context sensitivity,

with and without reflection analysis.

Fig. 12. Sizes of FlowsToVar relation, split by heap objects and tainted objects.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



P/Taint: Unified Points-to and Taint Analysis 102:23

App. Version Analyzed Methods Total Flows-To Tainted Flows-To Time (s)

Chrome 57.0.2987.132 39,944 56,168,662 9,769,307 2,606

FB Messenger 108.0.0.20.70 127,843 886,331,909 42,146,495 22,924

Translate 5.8.0 38,446 58,269,015 7,871,702 1,846

Instagram 10.5.1 50,552 108,152,452 16,732,102 3,918

Pinterest 6.13.0 49,401 105,419,805 10,697,848 4,167

Pokeradar 1.4-4 33,002 33,163,210 1,671,242 1,004

S Photo Editor 1.07 45,440 42,710,031 4,047,319 1,068

WhatsApp 2.17.79 56,862 174,409,922 52,644,141 9,551

Fig. 13. Analysis metrics for popular Android applications.

on the internal analysis complexity (e.g., total flows-to), and analysis time. The łanalyzed methodsž
are those that the analysis found the need to examineÐthese typically range from 25% to 50% of
the total application methods.

Since we have no source-code access for these applications, it is nearly impossible to classify leaks
beyond an intuitive, high-level understanding. However, we found even such an understanding to
yield insights. For instance, most apps have been found to leak information such as location data to
the network or file system.

In the Pokeradar Android client, there are 20 distinct instances where Google Analytics or other
ad libraries are found to send location information over the web. Fortunately, no instances of
personal information flowing to telephony or network APIs were recorded. The same patterns were
found on other popular apps such as WhatsApp. Our analysis also spotted benign SMS message
information (account verification codes) flowing to WhatsApp servers, and personal information
flowing from Google drive (via broadcast receivers) to WhatsApp servers. A worrying flow that was
uncovered was from Google drive data (also via broadcast receivers) that is used to determine the
URL from which additional code is loaded at run time. Without code access it is not clear whether
an attack vector might exist whereby a third party may tamper with the unencrypted7 WhatsApp
backups on Google drive to influence what code is loaded at run time. However, these are exactly
the kinds of patterns that a software engineer would likely be prompted to examine more closely.
Perhaps most importantly, the Android applications test the scalability of P/Taint on realistic

code bases, including the full Android library (not merely API stubs). Figure 13 shows analysis
times that range from a few minutes to 7 hours, for the Facebook Messenger app, which contains
over 55,000 classes. The analysis employed is a 1-call-site-sensitive analysis with partial context
(only applied when calling methods that can return references to the objects that were passed in).

Overall, we see that P/Taint applies to programs of realistic scale and can leverage its big
advantages of high configurability (e.g., of analysis context-sensitivity) by transparently inheriting
its algorithmic logic from an underlying points-to framework.

8 RELATED WORK

There is substantial related work in both modern information-flow analysis techniques and under
the theme of analysis-combination ideas. We next select some representative samples.
Livshits [2006] has also fruitfully explored the use of Datalog for taint analysis, but without

elements of unifying the approach with pointer analysis.
Tripp et al. [2013] express taint analysis as a demand-driven problem, instead of a complete

all-program-points flow. This is an interesting concept and certainly one worth exploring in future
work. Their Andromeda tool has multiple language support, applying to Java, .NET, and JavaScript.

7https://www.whatsapp.com/faq/en/android/28000019

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.

https://www.whatsapp.com/faq/en/android/28000019


102:24 Neville Grech and Yannis Smaragdakis

Compared to our approach, the work offers no unification of analyses, with taint analysis requiring
extra data-flow equations [Tripp et al. 2013, Fig.2,3] and separate concepts, such as taint sets. If
one were to add context sensitivity, all rules would need to be enhanced to carry the same context
information as rules that determine the flow of abstract values. In our approach, only a single set of
rules compute value flow, be it for regular object values or taint values. Thus, our information-flow
analysis inherits context sensitivity support from the underlying points-to analysis without extra
effort.
There are many Android taint analysis frameworks, and FlowDroid [Arzt et al. 2014] is one of

the more successful tools. It can perform a flow-sensitive static taint analysis, specifically designed
for Android applications. FlowDroid expresses its information-flow logic separately from an alias
analysis and call-graph construction logic. The system models many features of Android, such as
callbacks, and can model specific user interface elements as sources and sinks. Supporting features
such as callbacks is not trivial and requires an incremental call-graph construction and addition of
entry points at each iteration. FlowDroid relies on a manually-compiled list of more than 700 lines
of sources, sinks, and taint transfer methods. Taint transfer methods include most operations on
common collections. This may suggest a lack of generality in the core analysis. StubDroid [Arzt
and Bodden 2016] partially addresses this problem by automatically compiling summaries of taint
transfer methods. Naturally, positive effects on performance have been reported following the
application of these summaries.
IccTA is an improvement on the original FlowDroid, that allows taint propagation between

components [Li et al. 2015a]. Inter-component communication (ICC) in Android manifests itself
as an information-flow discontinuity during analysis. This is addressed in IccTA by generating
stub methods that connect components together and analyzing this modified program instead.
Another Android analysis framework is DroidSafe [Gordon et al. 2015], which is similar in approach,
except that it benefits from deep levels of object sensitivity, rather than flow sensitivity, in its core
static analysis. The authors have also developed an Android run time for use during analysis that
explicitly captures the semantics of life-cycle events.
Another approach to information-flow analysis is via the use of program dependence graphs,

as in Pidgin [Johnson et al. 2015]. Program dependence graphs can be used to model any form
of data and control dependence between instructions. By also detecting control dependencies,
PDGs are a good choice if detection of implicit flow of information is important. In our earlier
experiences while developing P/Taint we found that control-flow dependencies lead to higher
levels of imprecision and hence we do not consider control-flow dependencies. Pidgin also supports
multiple flavors of context sensitivity, which can also mitigate this imprecision. DroidInfer [Huang
et al. 2015] performs taint analysis using constraint flow graph reachability algorithms. It relies on
WALA8 to produce a control-flow graph prior to performing its main analysis. Yet another approach
involves the use of program slicing [Tripp et al. 2009], with an efficient representation for multiple
program slices with a lot of common nodes. This approach is also a client of context-sensitive
pointer analysis.

Much recent interesting work centers on dynamic languages. TAJS [Jensen et al. 2009] is one of
the first and best-known JavaScript analysis frameworks, aiming to find type-related errors using
static analysis. Dahse and Holz [2014] present an advanced technique for detecting second-order
vulnerabilities (a payload is first stored, then accessed). Their work is in the context of PHP, as
is the work of Hauzar and Kofron [2015] which combines value and heap analysis for detecting
security vulnerabilities. The latter is an instance of a fruitful combination (though not unification)
of static analyses.

8http://wala.sourceforge.net

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.

http://wala.sourceforge.net


P/Taint: Unified Points-to and Taint Analysis 102:25

A general analysis-combination pattern is that of performing two analyses in an intertwined
fashion, so that the results of one can feed into the other. Instances of this pattern are on-the-fly
call-graph construction (e.g., [Lhoták 2006]) and on-the-fly exception analysis [Bravenboer and
Smaragdakis 2009a]. The unification of points-to and information-flow analysis is different in that it
is leveraging the logic of one analysis to perform the other, and not merely evaluating two separate
analysis simultaneously. Furthermore, the underlying points-to analysis results are not affected by
the addition of taint abstract objects, unlike in past on-the-fly analyses.
Volpano et al. [1996] offered a well-known formulation of the problem of secure information

flow as a type system. This is an instance of expressing information-flow concepts in a known
formal framework, rather than a combination of analyses. Notable differences from our work are
that the type system does not treat pointers and there is no use of existing type system algorithms
to also compute information flow.
More generally, abstracting away from a specific analysis is a time-honored pattern in static

analysis research, and has yielded some of the deepest work in the area. Certainly, the abstract
interpretation framework for specifying static analyses [Cousot and Cousot 1977, 1979] has strong
elements of unifying analyses. More recently such elements have been brought out further, in the
łabstracting abstract machinesž work [Van Horn and Might 2010], which offers a general recipe for
deriving static analyses from well-known abstract machines. However, our unification of points-to
and information-flow analysis is quite different: it is not merely an effort to exploit commonalities
in the two analyses specifications, but a complete integration into one analysis with essentially
unchanged logic.

9 CONCLUSION

In this paper we proposed unifying points-to analysis and information-flow analysis, by leveraging
algorithms of the former to implement the latter. The unification approach underlies the design
of P/Taint: a framework that implements information-flow analysis by coercing a sophisticated
pointer analysis framework (Doop) into computing additional data flow facts. We achieved this goal
by elevating the domain of abstract heap objects and making small modifications to add aspects
of taint analysis with no counterparts in pointer analysis (taint transfer and sanitization). The
results have been quite impressive (precision, recall, run time), especially considering the extent of
leveraging algorithms developed for different purposes (points-to analysis).
While program analysis designers have viewed information and points-to analysis as distinct

processes, our work shows that the two can be unified fruitfully. The approach is not merely possible
but compelling for several reasons: engineering effort, language semantics support, precision. In
addition, we have shown (via modification of a highly abstract model of points-to analysis) that the
approach is also general enough to be applied to multiple analysis algorithms. Practical applications
of this approach to other pointer analysis frameworks may follow. As part of our future work we
will be investigating how support for Android and more open programs can be added.

ACKNOWLEDGMENTS

We gratefully acknowledge funding by the European Research Council, grant 307334 (SPADE). In
addition, the research work disclosed is partially funded by the REACH HIGH Scholars Program ś
Post-Doctoral Grants. The grant is part-financed by the European Union, Operational Program II,
Cohesion Policy 2014-2020 (Investing in human capital to create more opportunities and promote
the wellbeing of society - European Social Fund).

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.



102:26 Neville Grech and Yannis Smaragdakis

REFERENCES

Steven Arzt and Eric Bodden. 2016. StubDroid: automatic inference of precise data-flow summaries for the android

framework. In Proceedings of the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May
14-22, 2016. 725ś735. DOI:http://dx.doi.org/10.1145/2884781.2884816

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien

Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint

Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’14). ACM, New York, NY, USA, 259ś269. DOI:http://dx.doi.org/10.1145/2594291.2594299

Martin Bravenboer and Yannis Smaragdakis. 2009a. Exception Analysis and Points-to Analysis: Better Together. In Proc.
of the 18th International Symp. on Software Testing and Analysis (ISSTA ’09). ACM, New York, NY, USA, 1ś12. DOI:

http://dx.doi.org/10.1145/1572272.1572274

Martin Bravenboer and Yannis Smaragdakis. 2009b. Strictly Declarative Specification of Sophisticated Points-to Analyses.

In Proc. of the 24th Annual ACM SIGPLAN Conf. on Object Oriented Programming, Systems, Languages, and Applications
(OOPSLA ’09). ACM, New York, NY, USA.

Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: A unified lattice model for static analysis of programs

by construction or approximation of fixpoints. In Conference Record of the Fourth ACM Symposium on Principles of
Programming Languages. 238ś252.

Patrick Cousot and Radhia Cousot. 1979. Systematic design of program analysis frameworks. In POPL ’79: Proceedings of the
6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages. 269ś282.

Johannes Dahse and Thorsten Holz. 2014. Static Detection of Second-order Vulnerabilities inWeb Applications. In Proceedings
of the 23rd USENIX Conference on Security Symposium (SEC’14). USENIX Association, Berkeley, CA, USA, 989ś1003.

http://dl.acm.org/citation.cfm?id=2671225.2671288

Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen Nguyen, and Martin C. Rinard. 2015. Information

Flow Analysis of Android Applications in DroidSafe. In 22nd Annual Network and Distributed System Security Symposium,
NDSS 2015, San Diego, California, USA, February 8-11, 2015.

David Hauzar and Jan Kofron. 2015. Framework for Static Analysis of PHP Applications. In 29th European Conference
on Object-Oriented Programming (ECOOP 2015) (Leibniz International Proceedings in Informatics (LIPIcs)), John Tang

Boyland (Ed.), Vol. 37. Schloss DagstuhlśLeibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 689ś711. DOI:http:

//dx.doi.org/10.4230/LIPIcs.ECOOP.2015.689

Michael Hind. 2001. Pointer analysis: haven’t we solved this problem yet?. In Proc. of the 3rd ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering (PASTE ’01). ACM, New York, NY, USA, 54ś61.

Wei Huang, Yao Dong, Ana Milanova, and Julian Dolby. 2015. Scalable and Precise Taint Analysis for Android. In Proceedings
of the 2015 International Symposium on Software Testing and Analysis (ISSTA 2015). ACM, New York, NY, USA, 106ś117.

DOI:http://dx.doi.org/10.1145/2771783.2771803

Neil Immerman. 1999. Descriptive Complexity. Springer. DOI:http://dx.doi.org/10.1007/978-1-4612-0539-5
Simon Holm Jensen, Anders Mùller, and Peter Thiemann. 2009. Type Analysis for JavaScript. In Proc. 16th International

Static Analysis Symposium (SAS) (LNCS), Vol. 5673. Springer-Verlag.
Andrew Johnson, Lucas Waye, Scott Moore, and Stephen Chong. 2015. Exploring and Enforcing Security Guarantees via

Program Dependence Graphs. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’15). ACM, New York, NY, USA, 291ś302. DOI:http://dx.doi.org/10.1145/2737924.2737957

Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On Synthesis of Program Analyzers. Springer International
Publishing, Cham, 422ś430. DOI:http://dx.doi.org/10.1007/978-3-319-41540-6_23

Rezwana Karim, Mohan Dhawan, Vinod Ganapathy, and Chung-chieh Shan. 2012. An Analysis of the Mozilla Jetpack

Extension Framework. In Proceedings of the 26th European Conference on Object-Oriented Programming (ECOOP’12).
Springer-Verlag, Berlin, Heidelberg, 333ś355. DOI:http://dx.doi.org/10.1007/978-3-642-31057-7_16

George Kastrinis and Yannis Smaragdakis. 2013. Hybrid Context-Sensitivity for Points-To Analysis. In Proc. of the 2013 ACM
SIGPLAN Conf. on Programming Language Design and Implementation (PLDI ’13). ACM, New York, NY, USA.

Chris Lattner, Andrew Lenharth, and Vikram Adve. 2007. Making Context-Sensitive Points-to Analysis with Heap Cloning

Practical For The RealWorld. In Proc. of the 2007 ACMSIGPLANConf. on Programming Language Design and Implementation
(PLDI ’07). ACM, New York, NY, USA.

Johannes Lerch, Ben Hermann, Eric Bodden, and Mira Mezini. 2014. FlowTwist: Efficient Context-sensitive Inside-out

Taint Analysis for Large Codebases. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE 2014). ACM, New York, NY, USA, 98ś108. DOI:http://dx.doi.org/10.1145/2635868.2635878

Ondřej Lhoták. 2006. Program Analysis using Binary Decision Diagrams. Ph.D. Dissertation. McGill University.

Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden,

Damien Octeau, and Patrick McDaniel. 2015a. IccTA: Detecting Inter-component Privacy Leaks in Android Apps. In

Proceedings of the 37th International Conference on Software Engineering - Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ,

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.

http://dx.doi.org/10.1145/2884781.2884816
http://dx.doi.org/10.1145/2594291.2594299
http://dx.doi.org/10.1145/1572272.1572274
http://dl.acm.org/citation.cfm?id=2671225.2671288
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.689
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.689
http://dx.doi.org/10.1145/2771783.2771803
http://dx.doi.org/10.1007/978-1-4612-0539-5
http://dx.doi.org/10.1145/2737924.2737957
http://dx.doi.org/10.1007/978-3-319-41540-6_23
http://dx.doi.org/10.1007/978-3-642-31057-7_16
http://dx.doi.org/10.1145/2635868.2635878


P/Taint: Unified Points-to and Taint Analysis 102:27

USA, 280ś291. http://dl.acm.org/citation.cfm?id=2818754.2818791

Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. 2014. Self-Inferencing Reflection Resolution for Java. In Proc. of the 28th
European Conf. on Object-Oriented Programming (ECOOP ’14). Springer, 27ś53.

Yue Li, Tian Tan, and Jingling Xue. 2015b. Effective Soundness-Guided Reflection Analysis. In Static Analysis - 22nd Interna-
tional Symposium, SAS 2015, Saint-Malo, France, September 9-11, 2015, Proceedings (Lecture Notes in Computer Science), San-
drine Blazy and Thomas Jensen (Eds.), Vol. 9291. Springer, 162ś180. DOI:http://dx.doi.org/10.1007/978-3-662-48288-9_10

Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2015. The Java Virtual Machine Specification, Java SE 8 Edition.
Benjamin Livshits. 2006. Improving Software Security with Precise Static and Runtime Analysis. Ph.D. Dissertation. Stanford

University.

Benjamin Livshits, John Whaley, and Monica S. Lam. 2005. Reflection Analysis for Java. In Proc. of the 3rd Asian Symp. on
Programming Languages and Systems. Springer, 139ś160. DOI:http://dx.doi.org/10.1007/11575467_11

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2002. Parameterized object sensitivity for points-to and side-effect

analyses for Java. In Proc. of the 2002 International Symp. on Software Testing and Analysis (ISSTA ’02). ACM, New York,

NY, USA, 1ś11. DOI:http://dx.doi.org/10.1145/566172.566174

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized object sensitivity for points-to analysis for Java.

ACM Trans. Softw. Eng. Methodol. 14, 1 (2005), 1ś41. DOI:http://dx.doi.org/10.1145/1044834.1044835
Durica Nikolić and Fausto Spoto. 2012. Definite Expression Aliasing Analysis for Java Bytecode. In Proc. of the 9th

International Colloquium on Theoretical Aspects of Computing (ICTAC ’12), Vol. 7521. Springer, 74ś89. DOI:http://dx.doi.
org/10.1007/978-3-642-32943-2_6

Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting Program Properties from "Big Code". In Proceedings
of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM, New

York, NY, USA, 111ś124. DOI:http://dx.doi.org/10.1145/2676726.2677009

Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code Completion with Statistical Language Models. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’14). ACM, New York,

NY, USA, 419ś428. DOI:http://dx.doi.org/10.1145/2594291.2594321

Barbara G. Ryder. 2003. Dimensions of Precision in Reference Analysis of Object-Oriented Programming Languages. In

Proc. of the 12th International Conf. on Compiler Construction (CC ’03). Springer, 126ś137. DOI:http://dx.doi.org/10.1007/
3-540-36579-6_10

Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. 2011. Refactoring Java Programs for Flexible Locking. In

Proceedings of the 33rd International Conference on Software Engineering (ICSE ’11). ACM, New York, NY, USA, 71ś80.

DOI:http://dx.doi.org/10.1145/1985793.1985804

Micha Sharir and Amir Pnueli. 1981. Two Approaches to Interprocedural Data Flow Analysis. In Program flow analysis:
theory and applications, Steven S. Muchnick and Neil D. Jones (Eds.). Prentice-Hall, Inc., Englewood Cliffs, NJ, Chapter 7,

189ś233.

Olin Shivers. 1991. Control-Flow Analysis of Higher-Order Languages. Ph.D. Dissertation. Carnegie Mellon University.

Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Foundations and TrendsÂő in Programming Languages
2, 1 (2015), 1ś69. DOI:http://dx.doi.org/10.1561/2500000014

Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Bravenboer. 2015. More Sound Static Handling of

Java Reflection. In Proc. of the Asian Symp. on Programming Languages and Systems (APLAS ’15). Springer.
Yannis Smaragdakis, Martin Bravenboer, and Ondřej Lhoták. 2011. Pick Your ContextsWell: Understanding Object-Sensitivity.

In Proc. of the 38th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL ’11). ACM, New York,

NY, USA, 17ś30.

Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav. 2013. Alias Analysis for Object-Oriented

Programs. In Aliasing in Object-Oriented Programming. Types, Analysis and Verification, Dave Clarke, James Noble,

and Tobias Wrigstad (Eds.). Lecture Notes in Computer Science, Vol. 7850. Springer Berlin Heidelberg, 196ś232. DOI:

http://dx.doi.org/10.1007/978-3-642-36946-9_8

Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore Guarnieri. 2013. ANDROMEDA: Accurate and

Scalable Security Analysis of Web Applications. In Proceedings of the 16th International Conference on Fundamental
Approaches to Software Engineering (FASE’13). Springer-Verlag, Berlin, Heidelberg, 210ś225. DOI:http://dx.doi.org/10.
1007/978-3-642-37057-1_15

Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman. 2009. TAJ: Effective Taint Analysis of Web

Applications. In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’09). ACM, New York, NY, USA, 87ś97. DOI:http://dx.doi.org/10.1145/1542476.1542486

David Van Horn and Matthew Might. 2010. Abstracting Abstract Machines. In Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming (ICFP ’10). ACM, New York, NY, USA, 51ś62. DOI:http://dx.doi.org/

10.1145/1863543.1863553

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.

http://dl.acm.org/citation.cfm?id=2818754.2818791
http://dx.doi.org/10.1007/978-3-662-48288-9_10
http://dx.doi.org/10.1007/11575467_11
http://dx.doi.org/10.1145/566172.566174
http://dx.doi.org/10.1145/1044834.1044835
http://dx.doi.org/10.1007/978-3-642-32943-2_6
http://dx.doi.org/10.1007/978-3-642-32943-2_6
http://dx.doi.org/10.1145/2676726.2677009
http://dx.doi.org/10.1145/2594291.2594321
http://dx.doi.org/10.1007/3-540-36579-6_10
http://dx.doi.org/10.1007/3-540-36579-6_10
http://dx.doi.org/10.1145/1985793.1985804
http://dx.doi.org/10.1561/2500000014
http://dx.doi.org/10.1007/978-3-642-36946-9_8
http://dx.doi.org/10.1007/978-3-642-37057-1_15
http://dx.doi.org/10.1007/978-3-642-37057-1_15
http://dx.doi.org/10.1145/1542476.1542486
http://dx.doi.org/10.1145/1863543.1863553
http://dx.doi.org/10.1145/1863543.1863553


102:28 Neville Grech and Yannis Smaragdakis

Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. 1996. A Sound Type System for Secure Flow Analysis. J. Comput.
Secur. 4, 2-3 (Jan. 1996), 167ś187. http://dl.acm.org/citation.cfm?id=353629.353648

Jingyue Wu, Yang Tang, Gang Hu, Heming Cui, and Junfeng Yang. 2012. Sound and Precise Analysis of Parallel Programs

Through Schedule Specialization. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’12). ACM, New York, NY, USA, 205ś216. DOI:http://dx.doi.org/10.1145/2254064.2254090

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 102. Publication date: October 2017.

http://dl.acm.org/citation.cfm?id=353629.353648
http://dx.doi.org/10.1145/2254064.2254090

	Abstract
	1 Introduction
	2 Background and Illustration
	3 Analysis Design
	3.1 From Pointer to Information-Flow Analysis
	3.2 Flow-Through Data Transform Functions
	3.3 Sanitization Functions

	4 Scaling to a Full Taint Analysis Framework: Benefits
	4.1 Broad Support of Java Semantics
	4.2 Reflection
	4.3 Context Sensitivity and Precision
	4.4 Other Pragmatic Features
	4.5 Overall Benefit

	5 Discussion
	5.1 Contrast with Conventional Approaches
	5.2 Limitations

	6 Practical Elements
	6.1 Android Support
	6.2 Conventional Java Program Support

	7 Evaluation
	7.1 Controlled Benchmarks
	7.2 Real-World Android Applications

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

