
Explaining Bug Provenance with Trace Witnesses
Jixiang Shen

The University of Sydney

Australia

jshe9611@sydney.edu.au

Xi Wu

The University of Sydney

Australia

xi.wu@sydney.edu.au

Neville Grech

University of Athens

Greece

me@nevillegrech.com

Bernhard Scholz

The University of Sydney

Australia

bernhard.scholz@sydney.edu.au

Yannis Smaragdakis

University of Athens

Greece

yannis@smaragd.org

Abstract
Bug finders are mainstream tools used during software devel-

opment that significantly improve the productivity of soft-

ware engineers and lower maintenance costs. These tools

search for software anomalies by scrutinising the program’s

code using static program analysis techniques, i.e., without

executing the code. However, current bug finders do not

explain why bugs were found, primarily due to coarse-grain

abstractions that abstract away large portions of the oper-

ational semantics of programming languages. To further

improve the utility of bug finders, it is paramount to explain

reported bugs to the end-users.

In this work, we devise a new technique that produces

a program trace for a reported bug giving insight into the

root cause for the reported bug. For the generation of the

program trace, we use an abstracted flow-based semantics

for programs to overcome the undecidability of the problem.

We simplify the semantic problem by mapping an input

program with a reported bug to a Constant Copy Machine

(CCM) for the trace construction. Using CCM the semantics

of the program can be weakened, and thus bug provenance

can be solved in polynomial time, producing a shortest trace

in the process which gives the shortest explanation. The

technique is reified in the bug tracing tool Digger and is

evaluated on several open-source Java programs.

CCS Concepts: • Theory of computation → Program
analysis.

Keywords: Bug Provenance, Static Analysis, Trace Witness

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SOAP ’20, June 15, 2020, London, UK
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7997-7/20/06. . . $15.00

https://doi.org/10.1145/3394451.3397206

ACM Reference Format:
Jixiang Shen, Xi Wu, Neville Grech, Bernhard Scholz, and Yan-

nis Smaragdakis. 2020. Explaining Bug Provenance with Trace

Witnesses. In Proceedings of the 9th ACM SIGPLAN International
Workshop on the State Of the Art in Program Analysis (SOAP ’20),
June 15, 2020, London, UK. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3394451.3397206

1 Introduction
Bug finding tools have matured so that they are widely used

in the software development life cycle in industry [1]. How-

ever, state-of-the-art bug-finding tools that employ static

program analysis, mainly focus on the discovery of bugs

without providing a comprehensive explanation for their

existence.

To improve the utility of bug-finding tools, comprehen-

sive explanations for reported bugs are of paramount impor-

tance to further the utility and acceptance of bug-finding

tools. Bug-finding tools have developed ad-hoc notions of

provenance that explain the root cause of a reported bug.

However, the root cause of a bug is, in most cases, spatially

and temporally removed from the reported line number of

the bug itself. For a software engineer, it may not be immedi-

ately intuitive to understand the true existence of a reported

bug without understanding the connection between the root

cause of a bug and the reported line number. Hence, finding

the provenance of a bug exposes this causal connection and

is fundamental to improve the utility of a bug-finding tool.

State-of-the-art tools provide weak notions of provenance

such as recording partial paths and heuristics to expose the

root cause of the bugs where most of the techniques are

ad-hoc since the problem is inherently hard and undecidable

if definite explanations are sought after [10].

In this work, we give insight into finding the causal con-

nection between the root cause of a bug and the reported

line number. We use an abstract interpretation framework to

build the scaffolding for the provenance construction. The

program state is abstracted via a new computational model,

a Constant-Copy Machine (CCM), which is a decidable ma-

chine proposed for provenance construction. In the abstract

interpretation framework, we provide a strong-update [6]

14

SOAP ’20, June 15, 2020, London, UK Jixiang Shen, Xi Wu, Neville Grech, Bernhard Scholz, and Yannis Smaragdakis

semantics tracking the state of variables depending on the

context. The provenance of a reported bug is provided in the

form of a program path that, when executed in the abstracted

strong-update semantics, exposes the bug. We call such a

program path an abstract “Trace Witness".
Besides explaining the bug, the trace witness problem

may also be used to sharpen a flow-insensitive static pro-

gram analysis. For example, if a bug is reported using a flow-

insensitive analysis, but no trace witness can be produced,

we can assume that the bug is a false positive. Hence, the

trace witness can also be seen as a post-mortem analysis [7]

that introduces flow-sensitivity in a later stage of an analysis

pipeline. However, the existence of a trace is a necessary

but not sufficient condition for the existence of the bug. The

contribution of this paper can be summarised as follows:

• We introduce Trace-Witness that exposes the causal

connection between the root cause and the reported

line number of bugs, which is a program path and

resembles the provenance of a bug. (Section 2)

• We produce the trace-witness based on a novel trans-

lation scheme reducing the trace finding problem to a

Constant Copy Machine (CCM) that has constant and

copy assignments simulating state transfer in an input

program. (Section 2)

• We provide a new trace witness generator for the CCM,

which is based on shortest-path algorithms. (Section 3)

• We applied the trace generator on NPEs in java pro-

grams, which shows that around 80% of NPE bug re-

ports were invalidated. (Section 4)

2 Problem Statement
The objective of this work is to find a path that leads to a

bug in a program. The bug condition can be phrased as a

condition at a given point of the program, denoted as an

assertion. The trace witness of such program identifies a

subset of nodes, from which a unique path from the entry

point to the assertion of the program can be reconstructed

while the bug condition holds. In this paper, we solve this

problem for intra-procedural cases only. Inter-procedural

cases are left as an exercise for future work.

2.1 The CCM Language
This section will introduce a simplified intra-procedural ma-

chine called the Constant Copy Machine (CCM). Elementary

instructions in a CCM abstract the behaviour of a language

with side-effects such as C, and mimick the control-flow of

input programs via a Control-Flow Graph (CFG). In contrast

to a concrete semantics, no conditions govern the flow of

control, making the machine non-deterministic. The CCM is

only used for analysis purposes and not as an actual execu-

tion semantics. For the sake of demonstration, we will omit

the mapping of features such as memory management and

predicate evaluation.

A program in CCM is represented as a CFGG = (V , E, r , f),
where V is the set of program statements and E ⊆ V ×V is

the set of control-flow edges. Flow edge (u,v) denotes the
transfer of control from program statementu ∈ V to program

statement v ∈ V . There are two distinguished nodes r and f ,
where r is the start node of the CFG, and f is the final node.

A program path in CFGG is a finite sequence of statements,

denoted by p = ⟨u0,u1, . . . ,uk ⟩, such that (ui ,ui+1) ∈ E for

all i ∈ [0,k − 1]. The empty program path is denoted by ϵ
and the set of all program paths in a CFGG is denoted by PG .
The set PG (u,v) ⊆ PG stands for the set of all program paths

that emanate in statement u and terminate in statement v .
We have a labelling function ℓ : V → CCM that assigns a

statement to each node in the CFG. We have the following

statements in the CCM:

ccm ::= x := n (constant assignment)

| x := y (copy assignment)

| assert (x = n) (assertion)

| nop (no-operation)

The CCM has a finite set of variables Varwhose values are
natural numbers. It also has a fixed set of constants that can

be assigned to variables and copied from variable to another

variable via transfer statements. We use x and y to represent

variables, which belong to the finite variable set Var , whereas
n ∈ N stands for a constant. A statement in a node u can be

either a constant assignment x := n that assigns a constant

value n to the variable x ; or a copy assignment x := y that

copies the value stored in variable y to the variable x ; or an
assertion statement assert (x = n) which is used to check

whether the variable x has a certain value n in final node f ;
or a no-operation statement.

2.2 CCM Semantics
A trace witness is, in fact, a program path that emanates

from the start node r and terminates in the final node f , i.e.,
the assertion statement. The trace witness problem asks for

a trace witness (particular the shortest one) for which the

assertion A in the final node f holds under the program

context c in node f . The program context c : Var → N
is a function that maps variables to values. The semantics

function σ for statements in CCM σ : CCM → (c → c ′) is
given below:

• σ⟦x := n⟧ ≡ λc . c[x←n]: the constant assignment up-

dates the value of variable x with constant n in the pro-

gram context c and keeps other variables unchanged.

• σ⟦x := y⟧ ≡ λc . c[x←c(y)]: the copy assignment x :=

y updates the value of variable x with the value of

variable y in the program context c , and keeps other

variables unchanged.

• σ⟦assert (x = n)⟧ ≡ λc . c: the assertion statement

does not affect the program context c , which keeps it

unchanged.

15

Explaining Bug Provenance with Trace Witnesses SOAP ’20, June 15, 2020, London, UK

public static void
main(java.lang.String[])

args#_0 := @parameter0;

$r0 = 1;

void <init>()

this#_0 := @this;

Nop

Nop

npe#_17 = $r0;

private static void
NPECall(NPE, java.lang.String)

npe#_0 := @parameter0;

str#_0 := @parameter1;

public java.lang.String
returnNull(java.lang.String)

this#_0 := @this;

param#_0 := @parameter0;

$r0 = 1;

res_$$A_2#_6 = Phi(res#_3,
res_$$A_1#_5);

res_$$A_1#_5 = 0;

Nop

result#_12 = res_$$A_2#_6;

Assert(result#_12 == 0)

NopNop

res#_3 = $r0;

Interprocedual Call

Next Instruction

Nop

$null0 = 0

Nop

@parameter0 = Phi(npe#_17);
@parameter1 = Phi($null0);

Nop

Nop

@parameter0 = Phi(str#_0);

Nop

Figure 1. The CFG in CCM of NEP program in Listing 1

• σ⟦nop⟧ ≡ λc . c: similar as the assertion statement,

the no-operation statement also keeps the program

context cunchanged.

For sake of simplicity, we overload the notation of se-

mantics function σ and extend it for program paths, i.e.,

σ : PG → (c → c ′). The semantics function σ for program

paths is defined as

σ⟦p⟧ ≡
{
λc . (σ⟦p ′⟧)σ⟦ℓ(u)⟧, if p , ϵ and p = u · p ′

λc . c otherwise (i.e., p = ϵ)

The evaluation of a program path p is the semantics evalu-

ation σ⟦p⟧c0 where c0 represents the initial mapping for the

variables in the program, i.e., all variables in the program

are assumed to point to 0 initially. A bug condition can be

expressed as an assertion denoted by A, which is used to

check whether variables have some specific values at the

checking point for a context c that A(c) holds.

Definition 2.1 (Trace-Witness-Problem). An instance of

the trace witness problem is represented by the quadru-

ple (G,A,Var, ℓ) where G is the control flow graph of the

program, A the assertion, Var the set of variables in the

instance, and ℓ the labelling function. The solution of the

trace-witness problem is the shortest program path ps such
that A(σ⟦ps⟧c0) holds under the given context c0.

3 Trace Witness Generation
To understand the trace-witness problem on imperative lan-

guages (e.g., OO-languages), we use a translation approach,

known as a “gadget”. The gadget translates input programs

1 class NPE{
2 public String returnNull(String param) {
3 String res = new String();
4 if(param == null) res = null;
5 return res;
6 }
7 }
8 public class Main {
9 private static void NPECall(NPE npe, String str) {
10 String result = npe.returnNull(str);
11 result.toString();
12 }
13 public static void main(String[] args) {
14 NPE npe = new NPE();
15 NPECall(npe, null);
16 }
17 }

Listing 1. An Example of NPE in Java Program

(e.g., OO programs) into CCM, especially it converts pro-

grams with inter-procedural calls into intra-procedural cases,

so that we can solve the trace-witness problem in CCM. The

gadget also maps CCM trace back to the original input pro-

grams; note that, the existence of a trace in CCM doesn’t

guarantee the existence of a trace in input programs because

of unfeasible conditions. Its implementation makes use of

the Doop [11] framework. Due to space limitations, we omit

the details of the gadget. Instead, we provide a motivating

example (Listing 1), a Java program snippet containing a

Null Pointer Exception (NPE) at line 11
1
. The translation of

this program is shown as a CFG of the CCM in Figure 1. Two

1
The variable result points to null, which was caused by passing null as

a parameter into the static method NPECall.

16

SOAP ’20, June 15, 2020, London, UK Jixiang Shen, Xi Wu, Neville Grech, Bernhard Scholz, and Yannis Smaragdakis

public static void
main(java.lang.String[])

args#_0 := @parameter0;

$r0 = 1;

void <init>()

this#_0 := @this;

Nop

Nop

npe#_17 = $r0;

private static void
NPECall(NPE, java.lang.String)

npe#_0 := @parameter0;

str#_0 := @parameter1;

public java.lang.String
returnNull(java.lang.String)

this#_0 := @this;

param#_0 := @parameter0;

$r0 = 1;

res_$$A_2#_6 = Phi(res#_3,
res_$$A_1#_5);

res_$$A_1#_5 = 0;

Nop

result#_12 = res_$$A_2#_6;

Assert(result#_12 == 0)

NopNop

res#_3 = $r0;

Trace Witness

Nop

$null0 = 0

Nop

@parameter0 = Phi(npe#_17);
@parameter1 = Phi($null0);

Nop

Nop

@parameter0 = Phi(str#_0);

Nop

Figure 2. Trace Witness of NEP program in Listing 1

blocks in red are added by the gadget so that the original

inter-procedural calls among methods are converted into

intra-procedural connections (labeled in green dashed line).

In this section, we focus on presenting the new trace wit-

ness generator over a program CFG in CCM, which is based

on Floyd-Warshall shortest path algorithm
2
[4] to compute

the shortest distance from the initial node to a target node

over all pairs of nodes in CFG, and generate the trace witness.

For a given CCM program P and a bug report (i.e., an asser-

tion) A, we compute the Data Dependency Chain (DDC) of

P , whose result contains the variables that may contribute to

the assertion. Based on the Floyd-Warshall all pairs shortest

path algorithm, we develop a shortest trace generation algo-

rithm to compute the shortest trace distance between two

data dependent nodes from DDC, and to record the previous

data dependent node (or the initial node of CFG) of each data

dependent node in DDC in the resulting pair. Finally, a new

trace witness generator is proposed for the trace witness

generation in CCM programs.

3.1 DDC Computation
Data dependency denotes the data of a program statement

refers to the data of the preceding statements [8], and a DDC

consists of a set of assignments where the right-hand side of

the assignments is either a constant or a variable defined by

a statement in the set, forming a topological order between

assignments [3]. The construction of DDC abstracts the data

flow in the program as a tree structure, with which the traver-

sal becomes much easier to perform. Specifically, a function

is designed to check whether a variable may contribute to

2
Multiple paths may be found but the shortest path is the best option for

developers to easily find out the root cause of bugs.

the value in the assertion. If the variable is never assigned

the value appeared in the assertion, then this variable will

be pruned (i.e., definitely cannot appear in the DDC). We

go through each statement s in the CCM program P and

construct the DDC for the assertion A.

3.2 Shortest Trace Generation
Floyd-Warshall algorithm is an efficient solution for finding

the shortest path among all pairs of nodes, which leverages

the principle of dynamic programming to achieve its sim-

plicity and efficiency. Despite of its O(n3) time complexity,

it allows the result to be queried multiple times without any

re-computation, which may occur quite frequently during

program analysis.

Based on the Floyd-Warshall algorithm and the DDC re-

sult, we propose a shortest trace generation algorithm to

get the shortest trace distance between the initial node r
and each data dependent node in DDC. Specifically, we go

through all variables in DDC and get the corresponding node

for each variable based on the CFG. If the statement on a

node is a constant assignment, the distance of the shortest

trace between the initial node r and the current node (e.g.,

denoted as u) is the distance of the shortest path between

them, and we record r as the previous node of u. However, if
the statement on a node is a copy assignment, the distance of

the shortest trace between the initial node r and the current

node u equals to the sum of the shortest distance between

the initial node r and the node (i.e., middle node) whose

statement contains the variable on the right hand side of the

assignment, and the shortest distance between this middle

node and the current node u. In this case, we regard this

middle node as the previous node of u.

17

Explaining Bug Provenance with Trace Witnesses SOAP ’20, June 15, 2020, London, UK

Algorithm 1: Trace Witness Generation

Data: CCM program CFG G , assertion A in node f , initial node r
and context c0

Result: Trace witness t such that t is the shortest path from the

initial node r to the final node f , which makes the

assertion A(σ ⟦t⟧ c0) holds at node f
ShortestTrace(sNode, dNode)← run Shortest Trace Generation

algorithm to get the previous data dependent node of dNode, and

the shortest distance between sNode and dNode;

ShortestPath(sNode,dNode)← run Floyd-Warshall shortest path

algorithm for all feasible nodes in G , which returns the previous

node of dNode in G and the shortest distance between sNode and

dNode;

(pred , dist) ← call ShortestTrace(r , f);
w ← (f , pred);
while fst(w) , r do

if fst(w) , snd(w) then
w ′ ← w ;

fst(w ′) ← get the previous node by calling

ShortestPath(r ,fst(w));
else

w ′ ← (fst(w), get the previous node by calling

ShortestTrace(r ,fst(w)));

add fst(w) at the head of trace t ;
w ← w ′;

3.3 Trace Witness Generation
Based on the algorithms above, we develop the trace witness

generation algorithm in Algorithm 1. It will return all nodes

on the trace witness, which is the shortest program path

from the program initial node to the reported bug point.

With the help of a trace witness, we can provide a better

explanation for the root cause of the bug and avoid the false

positive as much as possible.

In the trace witness generation algorithm, we firstly get

the previous data dependent node pred of the bug reported
node f and the shortest distance between the initial node

r and f by invoking the shortest trace algorithm Shortest-
Trace. A pair of the current node (i.e., at the beginning is the

reported bug node f) and its previous data dependent node

pred is assigned to the variable w . The algorithm finds out

each node on the path from the current node to its previous

data dependent node pred by invoking the shortest path algo-
rithm ShortestPath. The current node inw will be updated by

each node on the path until it becomes the same as the one

in pred. In the meantime, the previous data dependent node

is also updated according to the change of the current node.

The iteration will finish until the current node becomes the

initial node r and the final result of this algorithm is given

in variable t . The trace witness result (labeled in red solid

lines) of the motivating example can be found in Figure 2.

4 Experiments
As a static program analysis tool, Digger suffers from inher-

ently high false-positive rate [5], which is difficult to trace

the reported bug or identify whether the bug is a false posi-

tive. In this section, we will conduct an empirical study on

some open-source Java programs to find valid traces of NPEs

reported by Digger to fully evaluate 1) the performance of

our algorithm in large-scale programs and 2) the application

of the algorithm in false-positive invalidation.

4.1 Experimental Setup
The empirical experiment will be conducted on a list of open-

source Java programs, which are obtained as Jar files from

SourceForge at versions where NPEs are reported. The pro-

grams are chosen in various sizes to better evaluate the per-

formance of our algorithm in relation to the size, including

JSP-3.0.0, JBoss-1.1.1 and Sling-11 as shown in Table 1. All

statistics in this table are reported by Doop and Soot [12].

Table 1. Problem Size

Benchmark JSPWiki-3.0.0 JBoss-1.1.1 Sling-11
Class 490 143 19

Method Call 931 1049 284

Methods 345 390 121

Variables 2230 2697 664

Object Creation Sites 7628 1274 377

Instructions 90556 22134 5652

Main Methods 8 1 1

For each program, it is firstly translated via the gadget into

CCM based program, in which our trace witness generator

will take every NPE reported by Digger as an assertion, and

produce a trace witness from the assertion back to the entry

point of the program (i.e., the first statement in the main

method). All tasks are run by Soufflé-1.6.2 compiler [9] in 6

threads except for Soot. All experiments are conducted on

Fedora Server Version 30 with 187GB RAM and 32 Intel(R)

Xeon(R) Gold 6130 CPU @ 2.10GHz.

4.2 Results and Discussion
Results for the experiments can be viewed in Table 2. We are

evaluating the runtime throughout stages in Gadget Transla-

tion, Shortest Path Computation and Trace Witness Genera-

tion. Since the majority of our algorithms are graph-based,

the graph size is taken as the main factor that can affect our

runtime performance.

From the results, we can observe that all experimental

programs detected trace witnesses for their reported NPEs

by Digger, with 14 out of 86 (16.2%) in JSPWiki, 2 out of 8 (25

%) in Sling and 3 out of 19 (15.7 %) in JBoss. The NPEs without

a valid trace witness are either because all nodes are pruned

due to unreachability or no trace can be found to make the

assertion to be true. For example, JSPWiki is the largest code

base program with 90556 statements before pruning and 8

main methods as mentioned in Table 1. However, out of all 8

main methods, only 2 of which the trace witness to the bug

points can be found.

18

SOAP ’20, June 15, 2020, London, UK Jixiang Shen, Xi Wu, Neville Grech, Bernhard Scholz, and Yannis Smaragdakis

Table 2. Trace Witness Results of Experiments

Program NPE Assertion (File: Line) Nodes Edge Gadget Runtime Shortest Path Runtime Trace Witness Runtime Trace Length(Nodes) Trace Length(Lines)

JSPWiki 86

Import: 167

2975 3295

3m 0s 13m 27s 6m 50s 11 7

Import: 161 3m 1s 13m 25s 6m 31s 6 3

WikiEngine: 580 2m 41s 11m 19s 5m 56s 236 106

WikiEngine: 581 3m 1s 13m 28s 6m 32s 329 107

WikiEngine: 582 2m 59s 13m 40s 6m 34s 331 108

WikiEngine: 587 3m 0s 13m 39s 6m 31s 275 88

WikiEngine: 618 3m 1s 13m 26s 6m 36s 275 88

WikiEngine: 614 3m 0s 12m 57s 6m 32s 275 88

WikiEngine: 579 2m 58s 13m 37s 6m 33s 325 105

Tag: 115

1434 1778

29s 4m 54s 54s 327 89

Tag: 111 28s 5m 9s 52s 235 89

Tag: 107 28s 5m 0s 52s 229 87

JspParser: 105 28s 5m 18s 52s 232 88

JspParser: 933 28s 5m 9s 53s 232 89

Sling 8

Main: 557

1879 2116

42s 11m 45s 2m 46s 187 45

Main: 566 45s 12m 19s 2m 55s 197 48

JBoss 19

PathUtils: 92

5223 5980

14m 39s 92m 57s 21m 28s 222 72

ModuleLoader: 208 14m 35s 92m 50s 21m 15s 106 40

ModuleLoader: 281 14m 29s 94m 21s 22m 34s 138 48

Even though our experiments invalidate nearly 80 % of

bugs reported by Digger, it is unknown that the deemed

invalid bugs are actually false positive. For example, the

unreachable case can be explained by an existence of other

entrances (e.g., a dependency on a third-party application)

to the program that we are not aware.

Gadget translation among all three processes takes the

least portion of total runtime for all graph sizes, whereas

the Floyd-Warshall shortest path algorithm is always the

slowest in terms of the performance. It is clear that the run-

time grows by increasing the graph size of three processes,

but the runtime of Floyd-Warshall shortest path algorithm

grows exponentially while others stay in linear. The runtime

growing trend indicates that the Floyd-Warshall shortest

path algorithm we currently used may be the bottleneck of

the performance once the graph becomes large enough.

The length of the trace witness is measured in the num-

ber of nodes (i.e., statements) and the number of code lines,

which appear in a linear relation. It can be inferred that

the length of the trace witness does not vary much among

different programs, which accordingly implies the size of a

program has little impact on the length of the trace witness.

In summary, this empirical study examined three open-

source Java programs, with around 80% of bugs reported

by Digger being eliminated by our technique and the rest

being expressed with valid trace witnesses. Our algorithm

is certainly efficient on small programs. As the size of the

program grows, a better shortest path algorithm may be

needed to reach a better performance.

5 Conclusion and Future Work
In this paper, we developed a trace-witness based bug prove-

nance technique to expose the connection between the root

cause of a bug and the reported line number of the bug to

the end-users. We introduced a new computational model

(CCM) for trace witness construction, which weakened the

semantics of a standard imperative language to overcome the

undecidability of computing a trace witness. Based on the

Floyd-Warshall shortest path algorithm, we developed a new

trace witness generator which has been applied on NPEs in

Java programs, reified as the tool Digger. Our results show

that around 80% of NPE bug reports were invalidated using

our technique. Our results also illustrate the efficiency of

our algorithms, which solve the bug provenance for complex

programs in polynomial time.

As future work, we will enrich the CCM by adding condi-

tional statements. Besides, we will investigate other shortest

path algorithms (e.g., Dijkstra algorithm [2]) to improve the

runtime performance of our trace witness generator. More-

over, inter-procedural cases will also be considered as an

extension of this work.

References
[1] Cristina Cifuentes and Bernhard Scholz. 2008. Parfait - Designing a

Scalable Bug Checker. In Scalable Program Analysis, Vol. 08161.
[2] E. W. Dijkstra. 1959. A Note on Two Problems in Connexion with

Graphs. Numer. Math. 1, 1 (Dec. 1959), 269–271.
[3] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The

Program Dependence Graph and Its Use in Optimization. ACM Trans.
Program. Lang. Syst. 9, 3 (July 1987), 319–349.

[4] Robert W. Floyd. 1962. Algorithm 97: Shortest Path. Commun. ACM 5,

6 (1962), 345.

[5] William Landi. 1992. Undecidability of Static Analysis. ACM Lett.
Program. Lang. Syst. 1, 4 (Dec 1992), 323–337.

[6] Ondrej Lhoták and Kwok-Chiang Andrew Chung. 2011. Points-to

Analysis with Efficient Strong Updates. SIGPLAN Not. 46 (2011), 3–16.
[7] Roman Manevich, Manu Sridharan, Stephen Adams, Manuvir Das, and

Zhe Yang. 2004. PSE: Explaining Program Failures via Postmortem

Static Analysis. SIGSOFT Softw. Eng. Notes 29, 6 (Oct 2004), 63–72.
[8] David A. Patterson and John L. Hennessy. 1990. Computer Architecture:

A Quantitative Approach. Morgan Kaufmann Publishers Inc.

[9] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann.

2016. On Fast Large-scale Program Analysis in Datalog. In Proc. 25th
International Conference on Compiler Construction. ACM, 196–206.

[10] J. C. Shepherdson and H. E. Sturgis. 1963. Computability of Recursive

Functions. J. ACM 10, 2 (April 1963), 217–255.

[11] Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis.

Found. Trends Program. Lang. 2, 1 (Apr 2015), 1–69.
[12] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick

Lam, and Vijay Sundaresan. 1999. Soot - A Java Bytecode Optimization

Framework. In Proc. of CASON ’99. IBM Press, 13.

19

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 The CCM Language
	2.2 CCM Semantics

	3 Trace Witness Generation
	3.1 DDC Computation
	3.2 Shortest Trace Generation
	3.3 Trace Witness Generation

	4 Experiments
	4.1 Experimental Setup
	4.2 Results and Discussion

	5 Conclusion and Future Work
	References

